You can find here short notes on math stuff I am working on. Mostly they consist of calculations checking some insight or hypothesis.
October 8, 2024
Special parameters
An old paper (Über hypergeometrische Funktionen, deren letztes Element speziell ist) by W. Heymann (from a talk by Wadim Zudilin) discusses the value of an ${}_2F_1$ at special $t$’s. He does $t=-1/3,1/4,1/5$ and related values and mentions Gauss for $t=1,-1,1/2$ and Kummer for $t=-1/8,1/9,8/9$.
For example we have this identity $$ F_h = F \left( -\frac{h}{2}, -\frac{h}{2} + \frac{1}{2}, h + \frac{3}{2}, -\frac{1}{3} \right) = \frac{2}{3} \cdot \left( \frac{8}{9} \right)^h \cdot \frac{\Gamma \left( \frac{1}{3} \right) \cdot \Gamma \left( h + \frac{3}{2} \right)}{\sqrt{\pi} \cdot \Gamma \left( h + \frac{4}{3} \right)} $$ If we take $h=1/2$ we get an HGM defined over $\mathbb Q$, we get the gamma vector $[-4,1,1,2]$ and corresponding Weierstrass model $$ y^2+xy=x^3+\frac t{64}x.
read more