Special parameters
By Fernando Rodriguez Villegas
- Categories: Math Notes
An old paper (Über hypergeometrische Funktionen, deren letztes Element speziell ist) by W. Heymann (from a talk by Wadim Zudilin) discusses the value of an ${}_2F_1$ at special $t$’s. He does $t=-1/3,1/4,1/5$ and related values and mentions Gauss for $t=1,-1,1/2$ and Kummer for $t=-1/8,1/9,8/9$.
For example we have this identity
$$ F_h = F \left( -\frac{h}{2}, -\frac{h}{2} + \frac{1}{2}, h + \frac{3}{2}, -\frac{1}{3} \right) = \frac{2}{3} \cdot \left( \frac{8}{9} \right)^h \cdot \frac{\Gamma \left( \frac{1}{3} \right) \cdot \Gamma \left( h + \frac{3}{2} \right)}{\sqrt{\pi} \cdot \Gamma \left( h + \frac{4}{3} \right)} $$If we take $h=1/2$ we get an HGM defined over $\mathbb Q$, we get the gamma vector $[-4,1,1,2]$ and corresponding Weierstrass model
$$ y^2+xy=x^3+\frac t{64}x. $$For $t=-1/3$ we get a curve with $j$-invariant $j(\sqrt{-3})=54000$ and the Frobenius traces match. We recognize the rhs as a Jacobi motive twisted by ${\mathbb Q}(\sqrt{2})$.
With MAGMA
> J:=JacobiMotive([1/3],[1/2,1/2+1/3]);
ORDER_IS_SUBFIELD: special root
> J:=TateTwist(J,-1);
ORDER_IS_SUBFIELD: special root
> pv:=PrimesInInterval(5,100);
> [EulerFactor(J,p): p in pv];
[
5*x^2 + 1,
7*x^2 - 4*x + 1,
11*x^2 + 1,
13*x^2 - 2*x + 1,
17*x^2 + 1,
19*x^2 + 8*x + 1,
23*x^2 + 1,
29*x^2 + 1,
31*x^2 - 4*x + 1,
37*x^2 + 10*x + 1,
41*x^2 + 1,
43*x^2 + 8*x + 1,
47*x^2 + 1,
53*x^2 + 1,
59*x^2 + 1,
61*x^2 - 14*x + 1,
67*x^2 - 16*x + 1,
71*x^2 + 1,
73*x^2 + 10*x + 1,
79*x^2 - 4*x + 1,
83*x^2 + 1,
89*x^2 + 1,
97*x^2 - 14*x + 1
]
- With GP
? heymanntr(p,h)=hgm(-1/3,[-h/2,-h/2+1/2],[h+3/2,1],p)
? forprime(p=5,100,print(p," ",recognizep(heymanntr(p,1/2)*kronecker(2,p))))
5 0
7 4
11 0
13 2
17 0
19 -8
23 0
29 0
31 4
37 -10
41 0
43 -8
47 0
53 0
59 0
61 14
67 16
71 0
73 -10
79 4
83 0
89 0
97 14
For $t=4/5$ Heymann has
$$ F\left( \frac{h}{2}, \frac{h}{2} + \frac{1}{2}, 3h, \frac{4}{5} \right) = k \cdot \left( \frac{27}{25} \right)^h \cdot \frac{\Gamma \left( h + \frac{1}{3} \right) \Gamma \left( h + \frac{2}{3} \right)}{\Gamma \left( h + \frac{2}{5} \right) \Gamma \left( h + \frac{3}{5} \right)}, \qquad h + \frac{1}{3} > 0, $$ $$ F\left( \frac{h}{2}, \frac{h}{2} + \frac{1}{2}, 3h - 1, \frac{4}{5} \right) = k' \cdot \left( \frac{27}{25} \right)^h \cdot \frac{\Gamma \left( h - \frac{1}{3} \right) \Gamma \left( h + \frac{1}{3} \right)}{\Gamma \left( h - \frac{1}{5} \right) \Gamma \left( h + \frac{1}{5} \right)}, \qquad h - \frac{1}{3} > 0. $$For $h=1/2$ we get the Artin HGM $[[1/4,3/4],[1/2,1]]$ with gamma vector $[-4,2,2]$, which has geometric model the Belyi equation
$$ x^2(1-x)^2-2^2\cdot2^2/4^4t. $$For $t=4/5$ we get the polynomial
$$ x^4 - 2x^3 + x^2 - 1/20 $$which gives the cyclotomic field ${\mathbb Q}(\zeta_{20})^+$ with Galois group cyclic of order four. The rhs of the formula corresponds to the Jacobi motive
$$ [[1/2+1/3,1/2+2/3],[1/2+2/5,1/2+3/5]] $$twisted by the quadratic character of ${\mathbb Q}(\sqrt 3)$, times possibly a contribution from the unspecified constant $k$ in the formula (we compute it below).
In MAGMA
> J:=JacobiMotive([1/2+1/3,1/2+2/3],[1/2+2/5,1/2+3/5]);
> pv:=PrimesInInterval(7,100);
> [[p,EulerFactor(J,p)]: p in pv];
[
[
7,
-T^2 + 1
],
[
11,
T^2 - 2*T + 1
],
[
13,
-T^2 + 1
],
[
17,
-T^2 + 1
],
[
19,
T^2 - 2*T + 1
],
[
23,
-T^2 + 1
],
[
29,
T^2 - 2*T + 1
],
[
31,
T^2 - 2*T + 1
],
[
37,
-T^2 + 1
],
[
41,
T^2 - 2*T + 1
],
[
43,
-T^2 + 1
],
[
47,
-T^2 + 1
],
[
53,
-T^2 + 1
],
[
59,
T^2 - 2*T + 1
],
[
61,
T^2 - 2*T + 1
],
[
67,
-T^2 + 1
],
[
71,
T^2 - 2*T + 1
],
[
73,
-T^2 + 1
],
[
79,
T^2 - 2*T + 1
],
[
83,
-T^2 + 1
],
[
89,
T^2 - 2*T + 1
],
[
97,
-T^2 + 1
]
]
BTW, we get exactly the same Euler factors if we take the conjugate motive (with parameters $[[1/2+1/3,1/2+2/3],[1/2+1/5,1/2+4/5]]$)
- With GP
? heymantr1(p)=hgm(4/5,[-1/4,1/4],[1/2,1],p)
? forprime(p=7,100,print(p," ",recognizep(heymantr1(p))))
7 0
11 -2
13 0
17 0
19 2
23 0
29 -2
31 -2
37 0
41 2
43 0
47 0
53 0
59 2
61 2
67 0
71 -2
73 0
79 2
83 0
89 -2
97 0
The traces agree up to a sign, which does not seem to be a character.
Checking directly against the number field in GP
? f=x^4 - 2*x^3 + x^2 - 1/20
? nf=nfinit(f);
*** nfinit: Warning: nonmonic polynomial. Result of the form [nf,c].
? forprime(p=7,100,print(p," ",nfeulerfactor(nf,p)/(1-x)/(1-kronecker(20,p)*x)))
7 x^2 + 1
11 x^2 + 2*x + 1
13 x^2 + 1
17 x^2 + 1
19 x^2 - 2*x + 1
23 x^2 + 1
29 x^2 + 2*x + 1
31 x^2 + 2*x + 1
37 x^2 + 1
41 x^2 - 2*x + 1
43 x^2 + 1
47 x^2 + 1
53 x^2 + 1
59 x^2 - 2*x + 1
61 x^2 - 2*x + 1
67 x^2 + 1
71 x^2 + 2*x + 1
73 x^2 + 1
79 x^2 - 2*x + 1
83 x^2 + 1
89 x^2 + 2*x + 1
97 x^2 + 1
This matches the HGM trace.
We can compute the constant $k$ numerically.
? ff=hypseries([1/4,3/4],[1/2,1],500);
? a=subst(truncate(ff),x,4/5.)
1.9021130325903071442328786667587642868
? b=gamma(1/2+1/3)*gamma(1/2+2/3)/gamma(1/2+2/5)/gamma(1/2+3/5)
1.0300566479164914136743113906093968629
? c=a/b
1.8466101223051520415421743456221458944
? algdep(c*5/3,4)
x^4 - 10*x^2 + 5
This constant is in the same field ${\mathbb Q}(\zeta_{20})^+$.
Actually the other constants are also algebraic in the same field.
? algdep(a,4)
x^4 - 5*x^2 + 5
? algdep(b*3/5,2)
x^2 + x - 1