
Lecture 1: Periods

Following the paper Periods [KZ] by M. Konstsevich and D. Zagier we define
a period as “a complex number whose real and imaginary parts are values of ab-
solutely convergent integrals of rational functions with rational coefficients, over
domains in Rn given by polynomial inequalitites with rational coefficients.” The
name period stems from the fact that the periods associated with trigonometric
functions and elliptic curves over C are periods in the sense just defined.

It can be shown that every algebraic number is a period. For example,

√
2 =

∫
2x2≤1

dx.

On a slightly less obvious note, if α is a complex root of z3 + z + 1 then

ℜ(α) =
∫
Ω

dx,

where Ω is the interval defined by 0 ≤ 8x3 + 2x ≤ 1. The periods are clearly a
countable subset of the complex numbers, and hence a proper subset. However,
it can be tricky to demonstrate that a given number is not a period. For example,
it is unknown whether or not e or 1/π are periods. The set of periods do include
many other noteworthy mathematical constants, such as

π =

∫
x2+y2≤1

dx dy =

∫ 1

−1

dx√
1− x2

=

∫ ∞

−∞

dx

1 + x2
,

log 2 =

∫ 2

1

dx

x
, and ζ(3) =

∫
Ω

dx dy dz

(1− x)yz
,

where ζ(s) =
∑∞

n=1 n
−s for ℜ(s) > 1 is the standard Riemann zeta-function,

and Ω is the region 0 ≤ x ≤ y ≤ z ≤ 1. The latter integral may be verified by
expanding 1/(1− x) in a geometric series, then integrating term by term.

The middle expression for π illustrates the general principle that employing
algebraic functions (or in fact algebraic coefficients) within our integral will still
produce a period. Thus the Beta function evaluated at rational values yields a
period. Take, for instance,

β( 13 ,
4
5 ) =

∫ 1

0

t1/3(1− t)−4/5dt =

∫
Ω

dx dy dt,

for Ω = {(x, y, t)|0 ≤ t ≤ 1, 0 ≤ x3 ≤ t, 0 ≤ y5(1 − t)4 ≤ 1}. Less obvious
examples of periods are given by Γ(p/q)q for p, q ∈ N, where Γ(s) is the Gamma
function defined by

Γ(s) =

∫ ∞

0

e−tts
dt

t
, ℜ(s) > 1.

It is well known that Γ(1/2)2 = π, while one can verify that

Γ( 13 )
3 = 24/331/2π

∫ 1

0

dx√
1− x3

using the Beta function and the Gauss multiplication formula.
Finally, we consider the zeta-functions of multiple arguments defined by

ζ(s1, . . . , sk) =
∑

0<n1<···<nk

n−s1
1 · · ·n−sk

k ,
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which will converge for ℜ(sk) > 1 and ℜ(si) ≥ 1 when i < k. (See [Za] for an
introduction to these multizeta values.) If the si are integers satisfying sk ≥ 2
and si ≥ 1 for i < k then we obtain further examples of periods. Thus

ζ(1, 2) =

∫ 1

0

∫ 1

0

∫ 1

y

y dx dy dz

(1− xy)(1− y)z
,

which may be verified in the same manner as above. This quantity leads to our
first example of an identity involving periods, for it turns out that ζ(1, 2) = ζ(3).
The proof of this fact illustrates the dearly held belief that one should be able to
prove any identity between periods using only standard algebraic manipulations,
elementary properties of integrals, the change of variables theorem, and Stokes’s
formula. (Unfortunately, no bound is placed on the degree of complexity these
proofs might achieve!) In our case, making the substitution (u, v, w) = (xy, y, z)
in the above expression and performing the integrations with respect to u and
w leads to an integral which is equivalent to the integral for ζ(3).

A more sophisticated such argument, due to Calabi, can be used to demon-
strate that ζ(2) = π2/6. We will evaluate the integral

I =

∫ 1

0

∫ 1

0

dx dy

(1− xy)
√
xy

in two ways. By expanding 1/(1 − xy) in a geometric series and integrating
term by term we discover that I =

∑∞
0 (n+ 1

2 )
−2 = (4− 1)ζ(2). On the other

hand, making the change of variables

x = v2
1 + u2

1 + v2
, y = u2 1 + v2

1 + u2

produces the Jacobian∣∣∣∣d(x, y)d(u, v)

∣∣∣∣ = 4uv(1− u2)(1− v2)

(1 + u2)(1 + v2)
=

4(1− xy)
√
xy

(1 + u2)(1 + v2)

and the new domain Ω of integration u ≥ 0, v ≥ 0, and uv < 1. Therefore

I = 4

∫
Ω

du

1 + u2

dv

1 + v2

= 2

(∫ ∞

0

du

1 + u2

)(∫ ∞

0

dv

1 + v2

)
=

π2

2
.

We present an assortment of other identities involving periods to demon-
strate the wide variety of forms they can take.

√
5 +

√
22 + 2

√
5 =

√
11 + 2

√
29 +

√
16− 2

√
29 + 2

√
55− 10

√
29

ζ(1, 3) =
2π4

6!
, ζ(1, 3, 1, 3) =

2π8

10!(∫ 1

0

dx√
1− x4

)(∫ 1

0

x2dx√
1− x4

)
=

π

4∫ π

0

∫ π

0

∫ π

0

dudvdw

1− cos(u) cos(v) cos(w)
=

Γ(1/4)4

4
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∫ π

0

∫ π

0

∫ π

0

dudvdw

3− cos(u)cos(v)− cos(u) cos(w)− cos(v) cos(w)
=

3Γ(1/3)6

214/3π∫ π/2

0

arccos

(
cosx

1 + 2 cosx

)
dx =

5π2

24∫ π/3

0

arccos

(
1

1 + 2 cosx

)
dx =

π2

8∫ π/3

0

arccos

(
1− cosx

2 cosx

)
dx =

11π2

72∫ 1

0

log
(
1 + x4+

√
15
)

1 + x
dx =

=
π2

12

(√
15− 2

)
+ log 2 log

(√
3 +

√
5
)
+ log

(
1 +

√
5

2

)
log
(
2 +

√
3
)

The formulas for ζ(1, 3), ζ(1, 3, 1, 3) as well as the general case ζ(1, 3, . . . , 1, 3)
were found numerically by Zagier and the general case was proved several years
later by Broadhurst; we will present a streamlined proof below from [KZ]. The
integrals involving cos(u) are two of the Three Triple Integrals of Watson [Wa],
which arose from a problem in ferromagnetism. The inverse trig integrals are due
to Coxeter [Cx] and arose from his consideration of “four-dimensional figures.”
The final example is one among other identities of this type due to Herglotz
[He] and are a consequence of his formulation of Kronecker’s limit formula for
real quadratic fields. (It does not seem clear, apriori, why the left hand side
should be a period.) In a later lecture we will define the Mahler measure of a
polynomial and discuss some remarkable identities involving these quantities.

A further appearance of a period with historical significance involves the
arithmetic-geometric mean M(a, b) of two positive real numbers. Starting with
a1 = a and b1 = b, recursively define an =

√
an−1bn−1 and bn = (an−1+bn−1)/2.

Then lim an and lim bn exist and are equal; we let M(a, b) denote their common
value. Gauss’s numerical discovery of the identity

M(1,
√
2) =

π

ω
, where ω =

∫ 1

0

dx√
1− x4

,

motivated his extensive study of the arithmetic-geometric mean (AGM) and
prompted the following entry in his diary on May 30, 1799: “We have estab-
lished that the AGM of 1 and

√
2 is π/ω to the eleventh decimal place; the

demonstration of this fact will surely open an entirely new field of analysis.”
For a fascinating account of this discovery, see Cox’s beautiful paper [Co].

The question of how to identify periods, or even rationals for that matter,
from their decimal expansions suggests the following game. Suppose that I
choose a rational number between 0 and 1 of some predetermined complexity, say
with numerator and denominator of three digits or less. You can buy successive
digits of the decimal expansion of my number for $1. What is your best strategy
if your goal is to correctly guess the fraction with the least expenditure of money?
(To be more precise, if you played this game many times and computed the
average amount of money spent per correct guess, how low could you drive this
average?) What is the most efficient algorithm for making your guesses? (Hint:
do not wait for the periodic decimal expansion to become evident!) What if
we played this game with algebraic numbers, or periods in general? To whet
your appetite, see if you can identify the following periods from their decimal
approximations, given the information about the number to the right.
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0.7419354838709677 · · · rational
0.99848465715368102 · · · rational
0.6823278038280193273694837 · · · algebraic number of degree 3
1.0757660660868371580595995 · · · algebraic number of degree 10
2.3080423740661582448037805 · · · rational linear combination of π and ζ(3)
4.89572789688944529086468 · · · rational multiple of a power of π

In general there is a very efficient algorithm (the LLL basis reduction algorithm)
which will find small integer dependencies among any number of constants [Ch].

Nonetheless, decimal approximations can sometimes be misleading. One of
the most infamous non-equalities is given by π

√
163/3 ≈ log(640320). These

two real numbers share sixteen initial digits before disagreeing! Several other
mathematical near misses are worth mentioning. In [Eu] Euler gives such an
example, with the title Exemplum Memorabile Inductionis Fallacis. He defines
the sequence of trigonal numbers as

an =
[(
x+ 1 + x−1

)n]
0
, n ≥ 0

where [ · ]0 stands for constant term. This sequence begins 1, 1, 3, 7, 19, 51,
and so on. Euler noticed that

−an+1 + 3an = F 2
n−1 + Fn−1, n = 0, . . . , 8

but fails for n = 9, where F−1 = 1, F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1

is the Fibonacci sequence. Why is it that an identity like this cannot possibly
hold for all n?

Even more fantastic still, Boyd [Bo] considers the sequence defined by

an+2 =

[
a2n+1

an
+ 1

]
, a0 = 8, a1 = 55

where [x] is the integer part of x. This sequence matches the coefficients in the
Taylor expansion about the origin of

8 + 7x− 7x2 − 7x3

1− 6x− 7x2 + 5x3 + 6x4
= 8 + 55x+ 379x2 + 2612x3 + · · ·

for n = 0, 1, . . . , 11055 but fails for n = 11056. (An equivalent formulation is
that an satisfies a linear recurrence relation with constant coefficients for some
(long) range n = 0, 1, 2, . . . but not for all n.)

There exist similar sequences that do satisfy linear recurrences. For instance
[Ca] shows that if an is defined by

an =

[
a2n+1

an
+

1

2

]
, a0 = 3, a1 = 10

then
∞∑

n=0

anx
n =

1

1− x(3 + x)
.

These examples arose from the work of Pisot on his special numbers.
Finally there is the curious phenomenon known as Langston’s ant. The web

site http://www.math.sunysb.edu/~scott/ants/ describes it as follows

Briefly, an “ant” moves around on an infinite checkerboard, each
square of which we refer to as a “cell”. Each cell in the plane is
labeled as either an L-cell or an R-cell. (Usually, one fills the plane
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with L-cells to start.) The ant starts out on the boundary between
two cells, and as it passes through each cell, it makes a 90 degree
turn, turning to the left in L-cells and to the right in R-cells, and
it changes the state of the cell it just left, switching L-cells to R-
cells, and vice versa. Following this simple set of rules gives rise
to some rather complicated behavior; the pattern of the ant’s track
alternates between apparent chaos and symmetry, but eventually it
starts to build a “highway” moving off in a single direction.

We return to our discussion of identities among periods, which often arise
in a geometric setting. The arc length of a curve in R2 is typically given by
an intractable integral, but occasionally the length can be computed exactly in
terms of standard mathematical constants. The circle, astroid, and lemniscate
with equations x2 + y2 = 1, x2/2 + y2/3 = 1, and (x2 + y2)2 = 2(x2 − y2)
have arc length 2π, 6, and 2ω, respectively, where ω is the constant defined
above in conjunction with Gauss and the AGM. (It can be shown that ω =
Γ(1/4)22−3/2π−1/2.) A more surprising result, known as Vivianni’s problem,
states that the surface area and volume of the sphere x2 + y2 + z2 ≤ 1 after the
two cylinders (x± 1/2)2 + y2 ≤ 1/4 have been removed are each rational.

We now present the promised streamlined proof of Zagier’s conjecture that

ζ(1, 3, . . . , 1, 3︸ ︷︷ ︸
2m

) =
2π4m

(4m+ 2)!

based on his observation of this equality for m = 1 and 2. A demonstration of
the general formula took several years to find; the following proof is based on the
one found by Broadhurst but is considerably more streamlined than the original
argument. Define the hypergeometric series for any three complex parameters
a, b, and c and a complex variable x as

F (a, b; c;x) =

∞∑
n=0

(a)n(b)n
(c)n n!

xn,

which is absolutely convergent for |x| < 1. Here (a)n = a(a+ 1) · · · (a+ n− 1)
is a “rising factorial.” Now form the generating function

1 +

∞∑
m=1

( ∑
0<a1<b1<···<am<bm

xbm

a1b31 · · · amb3m

)
(−4t4)m.

Incredibly, this sum factors as F (t,−t; 1;x)F (it,−it; 1;x), a fact which can be
established by proving that as a power series in x, each expression has constant

term 1 and is annhilated by the operator
(
(1− x) d

dx

)2 (
x d
dx

)2
+ 4t4. Setting

x = 1 in the resulting identity yields

1 +

∞∑
m=1

ζ(1, 3, . . . , 1, 3︸ ︷︷ ︸
2m

)(−4t4)m = F (t,−t; 1; 1)F (it,−it; 1; 1)

=
sinπt

πt

sinhπt

πt

=

∞∑
0

2π4m

(4m+ 2)!
(−4t4)m,

which completes the proof. Each step outlined above conceals some clever and
often intricate manipulations. As a worthwhile exercise the reader is encouraged
to fill in as many details as possible.
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As a final example of relationships among periods we introduce the diloga-
rithm and present the five term identity which it satisfies. Following Abel we
define

Li2(x) = −
∫

log(1− x)
dx

x
=

∞∑
n=1

xn

n2
, |x| < 1,

where we choose the anti-derivative satisfying the condition Li2(0) = 0. We
treat the indefinite integrals in a formal manner, without attending to issues
of convergence. So replace x by a

1−a
y

1−y , treating a as a parameter and y as a
variable. This substitution yields

Li2

(
a

1− a

y

1− y

)
= −

∫
log

(
1− a− y

(1− a)(1− y)

)
·
(
1

y
+

1

1− y

)
dy.

The integrand may be expanded to produce the four terms

−
∫
log
(
1− y

1−a

)
dy
y +

∫
log(1− y)dyy −

∫
log
(
1− a

1−y

)
dy
1−y +

∫
log(1− a) dy

1−y .

The first two terms are easily recognized as values of the dilogarithm, the third
becomes recognizable upon substituting z = a

1−y , and the final term can be
directly integrated. Therefore

Li2

(
a

1− a

y

1− y

)
= Li2

(
y

1− a

)
−Li2(y)−Li2

(
a

1− y

)
−log(1−a) log(1−y)+C.

Either by symmetry or by setting y = 0 we deduce the constant of integration
must be C = −Li2(a). The resulting identity gives the analog of log(xy) =
log x + log y for the dilogarithm of a product. This five term relation for Li2
has been discovered and rediscovered many times. Note that once we guess the
correct identity it is a simple matter to verify it by differentiation. Later we
shall see how this formula arises by considering sums of tetrahedra formed on
five vertices.
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Lectures 2–3: Zeta and L-Functions

Let X be an algebraic variety over a finite field, say defined by the equations
fj(x1, . . . , xn) = 0 for 1 ≤ j ≤ m with coefficients in Fq. Motivated by the
principle that geometry over a finite field will involve counting, as opposed to
pictures, we proceed to tally the number of solutions to the equations definingX.
This approach makes sense within the finite extensions of Fq, namely the fields
Fqr for any natural number r. (We will assume throughout that all the action
takes place in some fixed algebraic closure Fq of Fq.) Therefore we define Nr

to be the number of ordered n-tuples (x1, . . . , xn) with xi ∈ Fqr satisfying the
m equations defining X. The most useful form in which to package this data
turns out to be the formal power series

Z(X,T ) = exp

( ∞∑
r=1

Nr

r
T r

)
,

known as the zeta function ofX/Fq. For example, ifX is defined by f(x) = x−α
for α ∈ Fq, then clearly Nr = 1 for all r and we find that

Z(X,T ) = exp (− log(1− T )) =
1

1− T
.

The general dimension zero case can be analyzed without much more diffi-
culty. Hence suppose that X is defined by a polynomial f(x) of degree d in one
variable. We will assume that f(x) has no repeated roots in Fq, since none of
the Nr are affected by the presence of multiple roots. Let A = Fq[x]/(f) be the
quotient ring, which is an étale algebra. Then A has no nilpotent elements and
it can be shown that

A =

t∏
i=1

ki

is a product of fields of finite degree over Fq, each ki corresponding to an irre-
ducible factor fi(x) of f(x). As expected, ki ∼= Fq[x]/(fi), so ki has degree di
over Fq, where di is the degree of fi(x).

Now the number of solutions to f(x) = 0 in a given extension of Fq is simply
the sum of the number of solutions to each fi(x). So let Xi be the variety
defined by the equation fi(x) = 0, and let Nri be the number of solutions to
fi(x) = 0 over the field Fqr . Then we have

Z(X,T ) = exp

( ∞∑
r=1

Nr1 + · · ·+Nrt

r
T r

)
=

t∏
i=1

Z(Xi, T ).

Since fi(x) is irreducible it has exactly di roots, each contained in a field of de-
gree di over Fq, namely the field with qdi elements. Thus fi(x) splits completely
in any field Fqe containing the field with qdi elements, that is, whenever di|e.
Otherwise fi(x) has no solutions in Fqe . It follows that

Z(Xi, T ) = exp

( ∞∑
r=1

di
rdi

T rdi

)
=

1

1− T di
.

We conclude that

Z(X,T ) =

t∏
i=1

1

1− T di
.

This example illustrates several features (known as the Weil conjectures,
proven by Deligne) which the zeta functions Z(X,T ) all share. First, Z(X,T )
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is a rational function of T with coefficients in Q. Next, there is a functional
equation, which in the dimension zero case reduces to

Z(X, 1/T ) = (−1)tT dZ(X,T ), d =

t∑
i=1

di.

Finally, there is a statement regarding the absolute values of the roots (over C)
of the numerator and denominator of Z(X,T ); in our case it simply says that
they are roots of unity. We also mention that if Z(X,T ) has the form

Z(X,T ) =

∏
(1− βjT )∏
(1− αkT )

then it follows that Nr =
∑

αr
k −

∑
βr
j . In particular, if there are a total of l

factors in the expression for Z(X,T ) then given N1, . . . , Nl we can determine
the general formula for Nr, and hence the zeta function.

As an application of the above ideas, suppose f(x) ∈ Z[x] has no repeated
roots, so that A = Q[x]/(f) is étale, say with degree d over Q. Then for all but
a finite number of primes the reduction modulo p to Ap = Fp[x]/(f) will also
be étale with degree d over Fp. Let S be the finite set of primes for which this
does not occur. For p /∈ S, let Xp denote the variety corresponding to Ap, and
declare

ζS(X, s) =
∏
p/∈S

Z(Xp, p
−s),

where we have substituted p−s for T . This zeta function effectively collects all
the local information at each prime p. Hence when f(x) = x − a for a ∈ Z we
find S = ∅ and ζ(X, s) =

∏
(1− p−s)−1 = ζ(s), the Riemann zeta-function.

It is instructive to detail this procedure for a less trivial polynomial, such as
f(x) = x2+x−1, for which S = {5}. Rewriting the equation f(x) ≡ 0 mod p as
(2x−1)2 ≡ 5 mod p for p odd, p 6= 5, we see that f(x) splits in Fp precisely when
5 is a quadratic residue mod p, otherwise it splits in the quadratic extension
of Fp. (The same holds for p = 2, as the reader may verify.) According to the
above discussion, Z(Xp, T ) = (1 − T )−2 in the former case, while Z(Xp, T ) =
(1− T 2)−1 in the latter case. Hence

ζS(X, s) =
∏

( 5
p )=1

(1− p−s)−2
∏

( 5
p )=−1

(1− p−2s)−1.

Notice that each term contains a factor of (1− p−s)−1. We may complete this
zeta-function by including a factor of (1−p−s)−1 for p = 5, which is reasonable,
since f(x) has exactly one solution in each finite extension of F5. We denote
the result by ζ(X, s), namely

ζ(X, s) = ζ(s)L(X, s), L(X, s) =
∏
p

(
1−

(
5

p

)
p−s

)−1

,

where
(
5
5

)
= 0. The factor

(
5
p

)
is an example of a Dirichlet character, that is, a

multiplicative homomorphism χ : (Z/NZ)∗ −→ C∗ where χ(a) = 0 if (a, n) > 1.
It is primitive if the value of N is as small as possible; this value is called the
conductor of χ. The associated L-function is given by

L(χ, s) =
∏
p

(1− χ(p)p−s)−1.
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In order to study the analytic aspects of these L-functions we first review
some elementary properties of the gamma function. In the region <(s) > 1 it is
defined as Γ(s) =

∫∞
0

e−tts dt
t . It extends to a meromorphic function on all of

C having simple poles at {0,−1,−2, . . . } with residue (−1)n/n! at s = −n. In
addition, the gamma function satisfies the functional equation Γ(s+1) = sΓ(s).
Since Γ(1) = 1 follows easily from the definition, we find that Γ(n) = (n − 1)!
for n ∈ N. We also mention the duplication formula

Γ
(s
2

)
Γ

(
s+ 1

2

)
= 21−sπ1/2Γ(s).

Furthermore, the change of variables t 7→ at yields a−sΓ(s) =
∫∞
0

e−atts dt
t .

Finally, one of the crucial properties of the Gamma function is that Γ(s) 6= 0
for all complex numbers.

The function L(χ, s) also has an analytic continuation and satisfies a func-
tional equation. As a model for our method of proof we first handle the case of
the trivial character, namely L(1, s) = ζ(s).

Theorem: The function ζ⋆(s) = π−s/2Γ
(
s
2

)
ζ(s) defined for <(s) > 1 extends

to a meromorphic function on all of C satisfying ζ⋆(1− s) = ζ⋆(s).

Thus ζ⋆(s) provides an analytic continuation of ζ(s), and will provide infomation
about the zeros, poles, and residues of ζ(s) as well.

Proof: Using the series for ζ(s) we write ζ⋆(s) =
∑∞

n=1(πn
2)−s/2Γ

(
s
2

)
. Then

applying the formula for a−sΓ(s) given above we obtain

ζ⋆(s) =

∫ ∞

0

∞∑
n=1

e−πn2tts/2
dt

t
=

∫ ∞

0

1

2
(θ(t)− 1)ts/2

dt

t
,

where we have defined

θ(t) =
∑
n∈Z

e−πn2t, t > 0

based on the premise that sums over a complete lattice (such as Z) are easier to
handle. As we shall see, θ(t) satisfies the functional equation θ( 1t ) = t1/2θ(t).
This relationship comes into play when we split the integral into the two pieces∫∞
0

=
∫ 1

0
+
∫∞
1

and make the change of variables t 7→ 1
t in the first one, yielding

ζ⋆(s) =
1

2

∫ ∞

1

(t1/2θ(t)− 1)t−s/2 dt

t
+

1

2

∫ ∞

1

(θ(t)− 1)ts/2
dt

t

=
1

2

∫ ∞

1

(θ(t)− 1)
(
ts/2 + t(1−s)/2

) dt

t
− 1

2

∫ ∞

1

(
t−s/2 − t(1−s)/2

) dt

t

=
1

2

∫ ∞

1

(θ(t)− 1)
(
ts/2 + t(1−s)/2

) dt

t
−
(
1

s
+

1

1− s

)
.

Up to this point we have been working under the assumption that <(s) > 1.
However, the final expression for ζ⋆(s) is defined for all s ∈ C except s = 0, 1
because the function (θ(t)− 1) decreases very rapidly as t goes to infinity. This
proves that ζ⋆(s) is meromorphic on the entire complex plane with simple poles
at s = 0 and 1 with residues −1 and 1, respectively. Moreover, it is clear by
inspection that ζ⋆(s) = ζ⋆(1− s), thus proving the functional equation.

Therefore ζ(s) = πs/2ζ⋆(s)Γ
(
s
2

)−1
gives an expression for the Riemann zeta-

function which agrees with the series representation when <(s) > 1 but is valid
on all of C. Using the fact that neither Γ(s) nor ζ(s) have zeros for <(s) > 1,
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we conclude the same is true of ζ⋆(s). The functional then implies that ζ⋆(s)
has no zeros for <(s) < 0 either. Hence the zeros of ζ(s) correspond to poles of
Γ
(
s
2

)
in this domain, so ζ(s) has a simple zero at s = −2, −4, −6, . . . . Clearly

ζ(s) has a simple pole at s = 1 with residue 1. Based on our knowledge of ζ⋆(s),
the only other candidate for a pole is s = 0. However, we find that

ζ(0) = lim
s→0

πs/2ζ⋆(s)

Γ
(
s
2

) = lim
s→0

sζ⋆(s)

2 · s
2Γ
(
s
2

) = −1

2
,

since s
2Γ
(
s
2

)
= Γ

(
s
2 + 1

)
and hence goes to Γ(1) = 1 as s → 0. It turns out

that the behavior of ζ(s) near s = 0 provides information about the unit group
of the integers! The 2 appearing in the denominator corresponds to the fact
that Z contains two roots of unity, and the order of vanishing of ζ(s) at s = 0
(which is zero, in this case) predicts the rank of the unit group.

We now provide the proof that θ( 1t ) = t1/2θ(t), which requires the following
clever tool.

Theorem: (Poisson Summation Formula) Let f : Rn → R be a rapidly decreas-

ing C∞ function with Fourier transform f̂(y) =
∫
f(x)e−2πix·y dx. Then∑

m∈Zn

f(m) =
∑

m∈Zn

f̂(m).

Proof: We provide an outline of the argument. Let

h(x) =
∑

m∈Zn

f(x+m) =
∑

m∈Zn

cme2πim·x,

where the coefficients cm are given by

cm =

∫
[0,1]n

h(x)e2πim·x dx

=
∑
l∈Zn

∫
[0,1]n

f(x+ l)e2πim·x dx

=

∫
Rn

f(x)e2πim·x dx

= f̂(m).

Now plug in x = 0 to obtain the Poisson summation formula.
Finally, to prove the functional equation for θ(t) we implement the function

g(x) = e−πtx2

, whose Fourier transform is ĝ(y) = t−1/2eπy
2/t. (This follows

from the fact that the function e−πx2

is its own Fourier transform, and then
scaling by x 7→

√
tx.) Applying Poisson summation to g(x) immediately gives

θ( 1t ) = t1/2θ(t), as desired.
The technique outlined above demonstrates a standard approach to proving

analytic continuation and finding a functional equation. For instance, it can
be used when F = Q[x]/(f) is a number field. The prime ideals of the ring of
integers OF give rise to a zeta-function

ζF (s) =
∏
p

(
1− (Np)−s

)−1
.

Hecke observed that in order to use the above strategy for analytic continuation
in this setting one must heed the infinite primes of F as well. Therefore we
write

V = F ⊗ R ∼= Rr1 × Cr2
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corresponding to the number of real and pairs of complex roots. (I.e. the degree
of f(x) is r1 +2r2.) Complex conjugation acts on V providing a decomposition
V = V + ⊕ V − into subspaces with eigenvalues 1 and −1 having dimensions
n+ = r1 + r2 and n− = r2. We then define Γ+(s) = π−s/2Γ

(
s
2

)
and Γ−(s) =

π−(s+1)/2Γ
(
s+1
2

)
. Now set

ζ⋆F (s) = |∆F |s/2Γ+(s)
n+Γ−(s)

n−ζF (s) = γ(s)ζF (s).

Here ∆F stands for the discriminant of F . Then just as before it can be shown
that ζ⋆F (s) provides an analytic continuation of ζF (s) to the entire complex
plane with simple poles at s = 0 and 1, which satisfies the functional equation
ζ⋆F (s) = ζ⋆F (1−s). As above we know that ζ⋆F (s) 6= 0 for <(s) > 1 and hence for
<(s) < 0 as well by the functional equation. Furthermore, we know the orders
of the zeros and poles of γ(s) since we understand Γ(s). Therefore we may
deduce the behavior of ζF (s) at the integers. The table below summarizes our
results; the entries record the order of the zero of the corresponding function.
Thus ‘2’ means a zero of order two, ‘-1’ denotes a simple pole, and ‘0’ indicates
a non-zero value.

s −3 −2 −1 0 1 2 3 4
ζ⋆F (s) 0 0 0 −1 −1 0 0 0
γ(s) −n− −n+ −n− −n+ 0 0 0 0

ζF (s) n− n+ n− n+ − 1 −1 0 0 0

After Deligne, we call m ∈ Z a critical value for F if neither γ(m) nor γ(1−m)
has a pole at s = m. For example, if F is a totally real field, so that r2 = 0,
then the critical values of F are the positive even and negative odd integers.
In a sense the critical values are the “easy integers,” in that we are able to
compute ζF (s) at the critical values in relatively simple terms. For example,
in the trivial case L(1, s) = ζ(s) the critical values include the positive even
integers, and ζ(m) ∈ Qπm for m > 0 even.

We now return to the situation in which X is an ètale variety of degree two,
dimension zero defined by a separable quadratic equation f(x) = 0 with integral
coefficients, as was the case in our example above when f(x) = x2+x−1. In this
setting the law of quadratic reciprocity can be formulated as follows: there is
a one-to-one correspondence between these varieties X and quadratic Dirichlet
characters χ via the relationship ζ(X, s) = ζ(s)L(χ, s). Let F = Q[x]/(f) be
the coordinate ring of X, which will be a field unless f is reducible, which is
the first case below. Otherwise we can classify the field F by the parity of χ as
shown in the table.

F ∼= Q⊕Q χ ≡ 1 (χ trivial)
F is real quadratic
(n+ = 2, n− = 0) χ(−1) = 1 (χ even)

F is imaginary quadratic
(n+ = 1, n− = 1) χ(−1) = −1 (χ odd)

It should come as no surprise that the associated L-functions have analytic
continuations given by

L⋆(χ, s) = γ(s)L(χ, s) =

{
|∆F |s/2Γ+(s)L(χ, s) χ even
|∆F |s/2Γ−(s)L(χ, s) χ odd

,

satisfying the functional equation L⋆(χ, s) = L⋆(χ, 1− s). Using γ(s) we define
the critical values m ∈ Z exactly as before. We then obtain the neat result that

(−1)mχ(−1) sgn(m) = 1 ⇐⇒ m is critical for L(χ, s).
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Let us now examine the behavior of ζF (s) near s = 0, 1 for a number
field F . Since these are non-critical values, we expect the analysis to be more
complicated. In fact, Dirichlet’s class number formula will appear. Recall that
if F = Q[x]/(f) with ring of integers OF then

ζF (s) =
∏

p⊂OF

(
1− (Np)−s

)−1
=
∑

a⊂OF

(Na)−s

for <(s) > 1. We have seen that there is a simple pole at s = 1; we now wish
to determine its residue. In general this quantity will involve the class group
Cl(F ) and the unit group O∗

F . However, to provide an illustration of the overall
sequence of ideas without raising too many technical issues, we will concentrate
on the case in which F has class number one, i.e. OF is a principal ideal domain.

To fix our ideas, suppose that F = Q(
√
3). There are two real embeddings

σ1, σ2 : F ↪→ R which provide an embedding of OF ↪→ F ⊗ R ∼= R2 as a full
lattice, namely α 7→ (ασ1 , ασ2) for α ∈ OF . In our case OF

∼= Z+
√
3Z so the

image lattice has (1, 1) and (
√
3,−

√
3) as a basis. Recall that a fundamental

unit for OF is ε = 2 +
√
3, so the unit group is O∗

F = ±εn for n ∈ Z. In our
case the units are exactly those elements with norm one, hence precisely the
points of the lattice on the hyperbola xy = 1. There is a cone C ⊂ R2 with
the property that every ideal a ⊂ OF is represented by exactly one lattice point
within C, in that a = (α) for exactly one α ∈ OF whose image lies in C. (The
reader may verify that the region bounded by two rays emanating from the
origin, one passing through (1, 1) and the other through (ε, ε−1) together with
the region bounded by rays through (

√
3,−

√
3) and (ε

√
3,−ε−1

√
3) is a cone

with this property. The set C should include the first and third rays but not
the second or fourth.)

The same occurs for arbitrary number fields: we have OF ↪→ F ⊗R as a full
lattice L, a cone C ⊂ Rn containing exactly one representative of each ideal a ⊂
OF , and a norm N : Rn −→ R≥0 satisfying N(L) ⊂ Z≥0 and N(tx) = tnN(x)
for t ∈ R and x ∈ Rn. (See Shavarevich and Borevich for a more detailed
exposition of these ideas.) Therefore the zeta-function may be written as

ζF (s) =
∑

α∈L∩C

1

N(α)s
.

If we set an = {α ∈ L ∩ C|N(α) = n} then the previous formula becomes the
Dirichlet series ζF (s) =

∑∞
n=1 ann

−s.
To proceed further we will need to approximate the quantityA(x) =

∑
n≤x an,

the number of lattice points in the cone C with norm at most x. Let Cx denote
this region in Rn. But counting lattice points in Cx approximates its volume;
to be precise, vol(Cx) ∼ A(x)|L|, where |L| = vol(Rn/L) is the volume of the
lattice. (This volume can be computed by taking the determinant of a matrix
of basis vectors of L.) On the other hand, because of the manner in which
the norm map N scales, vol(Cx) = xV1, where V1 = vol(C1). (For example,
in the instance F = Q(

√
3) described above V1 is the area of the region inside

C bounded by the hyperbolas xy = ±1.) We conclude that A(x) ∼ κx for
κ = V1/|L|.

One of basic tools for understanding Dirichlet series is Abel summation. In
general, suppose that cn for n ≥ 1 is a sequence of complex numbers and define
a function C(t) =

∑
n≤t cn for t ≥ 1. Then given a differentiable function f(x)

defined for x ≥ 1 we find that∑
1≤n≤x

cnf(n) =
∑

1≤n≤x−1

C(n)(f(n)− f(n− 1)) + C(x)f([x])

= C(x)f([x])−
∫ x

1

f ′(t)C(t) dt.
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We apply this formula by taking f(t) = t−s for a fixed s with <(s) > 1 and using
the sequence an from above with partial sums A(x) ∼ κx. These substitutions
yield ∑

1≤n≤x

ann
−s = A(x)[x]−s +

∫ x

1

st−s−1A(t) dt.

Taking the limit as x → ∞ produces

∞∑
n=1

ann
−s = lim

x→∞

A(x)

xs
+

∫ ∞

1

st−sA(t)
dt

t
.

Since <(s) > 1 the first term in the sum goes to zero. If we were to have
A(x) = κx then the second term would equal κs

s−1 by direct integration. Since
we only have A(x) ∼ κx the integral will differ from this expression, but only
by an amount which remains bounded as s → 1 from above. (This last state-
ment requires a little care to prove; see Frölich and Taylor, section VIII.2.) In
summary, we have shown that

Theorem: The residue of ζF (s) at s = 1 is given by

lim
s→1+

(s− 1)ζF (s) = κ =
V1

|L|
.

The numbers V1 and |L| can be computed in terms of simple constants
and intrinsic quantities associated with our field F . In general there exists a
homomorphism log : O∗

F −→ V0 from the unit group to a vector space V0 of
dimension n+−1 whose image is a full lattice and whose kernel is µ(F ), the roots
of unity in F . In the case F = Q(

√
3) the map looks like α 7→ (log |ασ1 |, log |ασ2 |)

and V0 is the one-dimensional subspace in which the sum of the coordinates is
zero. (Note the image of the log map lies in V0.) The volume of this lattice
divided by

√
r1 + r2 is called the regulator R. One can show via somewhat

laborious computation that V1 = 2r1πr2R/w, where w counts the number of
roots of unity in F . Another calculation reveals that |L| = 2r2 |∆F |−1/2. Finally,
the class number h will make an appearance since in general the sum defining
ζF (s) extends over all ideals a ⊂ OF , not just principal ideals. In summary, the
Dirichlet class number formula gives the residue of ζF (s) at s = 1:

lim
s→1

(s− 1)ζF (s) =
2r1(2π)r2hR

w
√
|∆F |

.

It is instructive to use this result to deduce the behavior of ζF (s) near s = 0
using the functional equation and various facts established above. One should
find that ζF (s) has a zero of order n+− 1 with leading coefficient −hR

w . Testing
this in the case F = Q we have n+ = 1, h = R = 1, w = 2, and ζ(0) = − 1

2 .
In a later lecture we will exhibit an analogous formula due to G. Humbert

which involves the value of ζF (2) when F is an imaginary quadratic field. More
precisely, the group Γ = PGL2(OF ) acts on hyperbolic 3-space H3, and the
volume of the quotient is

vol(Γ\H3) =
3|∆F |3/2ζF (2)

4π
.

The formula is rather remarkable in that it connects two seemingly unrelated
quantities.
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Lectures 4–5: K-Theory, Part I

Our motivation for studying K-theory comes from a result of Borel involving
a sequence of groups Kn(A), n ≥ 0 associated with a ring A. For number fields
F we have defined ζF (s), a meromorphic function on the entire complex plane.
Let ρm be the order of the zero of ζF (s) at s = 1 − m for m > 1. Borel has
proved that the rank of K2m−1(F ) is ρm and that there is a homomorphism
reg : K2m−1(F )−→Rρm whose image is a full lattice L with covolume

|L| = CπN |∆F |1/2ζF (m),

where C is a product of constants associated with the field F , N is an integer,
and ∆F is the discriminant of the field. (Using the functional equation, the
above formula can also be stated in terms of the leading coefficient of ζF (s)
expanded about s = 1 −m.) In other words, there is a formula analogous to
the Dirichlet class number formula for m > 1.

The subject of K-theory has grown into an extensive, complicated branch
of mathematics. It had its roots in topological considerations, which motivated
the definitions of K0(A) and K1(A) given below. A fair amount of debate
ensued over how best to define functors Kn for n ≥ 2 from the category of
associative (usually commutative, in practice) rings with 1 to the category of
abelian groups. (Naturally, one would hope for a definition giving rise to nice
unifying properties, such as the existence of long exact sequences.) In what
follows, we will develop the foundation of the theory to the extent that we need
it for future applications.

We define K0(A) to be the abelian group with one generator [P ] for each
finitely generated projective module over A, subject to the relations

[P ] + [Q] = [P ⊕Q].

Recall that an A-module P is projective if there exists an A-module Q such
that P ⊕Q ∼= Ar for some r ∈ N. Furthermore, we say that P and Q are stably
isomorphic if P ⊕Ar ∼= Q⊕Ar for some r ∈ N.

Lemma: [P ] = [Q] in K0(A) if and only if P and Q are stably isomorphic.

The group K0(A) is actually a commutative ring, with the product operation
given by the tensor product over A, so that [P ] · [Q] = [P ⊗Q].

In the case that A = OF is the ring of integers of a number field F we can
state more precisely that

K0(A) ∼= Z⊕ Cl(F ).

The correspondence is set up by the fact that any finitely generated OF -module
is of the form a1 ⊕ · · · ⊕ ar for ideals ai ⊂ OF . We map this element to
(r, {a1a2 · · · ar}), involving the class of the product of the ideals. This corre-
spondence is well-defined and provides the isomorphism. With this description
the ring structure is given by the addition and multiplication rules

(r, {a}) + (s, {b}) = (r + s, {a}{b}),

(r, {a}) · (s, {b}) = (rs, {a}s{b}r),

for r, s ∈ Z. In particular, notice that multiplying any two rank zero elements
yields 0, since taking r = s = 0 above gives a product of (0, 1), which is 0
in K0(A). The product formula can be derived by choosing representatives
[a] + [Ar−1] and [b] + [As−1], where [A−n] is interpreted as −[An], then taking
the tensor product. The relationship a⊕ b ∼= A⊕ ab is useful here.
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We next describe the abelian groupK1(A). Denote the direct limit (union) of
the multiplicative groupsGLn(A) asGL(A), whereGLn(A) embeds inGLn+1(A)
via the homomorphism

M 7→
[
M 0
0 1

]
.

On an intuitive level elements of GL(A) are “infinite matrices” of the form
I∞ +M0, where I∞ is the “infinite identity” and M0 has only a finite number
of non-zero entries.

Given distinct positive integers i, j and λ ∈ A we next define the elementary
matrix eij(λ) ∈ GLn(A) to be the matrix which differs from the identity by a
single off-diagonal entry λ in the ijth position. The elementary matrices satisfy
several simple relationships. For example, eij(λ)eij(µ) = eij(λ+ µ). Therefore
eij(λ)

−1 = eij(−λ). We also have the commutator relationships:

[eij(λ), ekl(µ)] =

 1 i 6= l, j 6= k
eil(λµ) j = k, i 6= l
ekj(−µλ) j 6= k, i = l

.

Notice that the case i = l, j = k is absent, as the commutator in this case is
not equal to a single elementary matrix.

Let En(A) be the subgroup of GLn(A) generated by all elementary matrices
eij(λ) with i, j ≤ n, and in the same manner as before define E(A) to be the di-
rect limit of these groups. Since every elementary matrix has determinant equal
to 1, we have E(A) ⊂ SL(A) ⊂ GL(A). We now set K1(A) = GL(A)/E(A).
The following result due to Whitehead will show that K1(A) is in fact the
abelianization of GL(A).

Lemma: E(A) is exactly the commutator subgroup of GL(A).

Proof: We first show that every elementary matrix is contained in the com-
mutator subgroup. By the above relationships this fact is immediate, since
eij(λ) = [eik(λ), ekj(1)] for any k distinct from i and j. We now show that the
commutator of any two elements M and N of GL(A) is contained in E(A). We
will treat M and N as matrices in GLn(A) for n sufficiently large. Note that
the identity[

M 0
0 M−1

] [
N 0
0 N−1

] [
(NM)−1 0

0 NM

]
=

[
[M,N ] 0

0 I

]
shows that [M,N ] can be written as a product of matrices of a certain form, so
it suffices to show that such matrices are in E(A). But one can verify that[
M 0
0 M−1

]
=

[
I I
0 I

] [
I 0
L I

] [
I −I
0 I

] [
I M−1L
0 I

] [
I 0

−ML I

]
,

where M = I + L. Since an upper (or lower) triangular matrix with ones on
the diagonal is clearly a product of elementary matrices, we have shown that
[M,N ] ∈ E(A), completing the proof. Observe how the passage to the direct
limit allowed us to write [M,N ] in the desired form; in general it is not true
that En(A) is the commutator subgroup of GLn(A).

If A is a commutative ring then we have a split exact sequence

1 −→ SL(A) −→ GL(A)
det−→ A∗ −→ 1,

due to the natural embedding A∗ ∼= GL1(A) ↪→ GL(A). Hence

K1(A) ∼= A∗ ⊕ SL(A)/E(A).
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We know from linear algebra that SL(A) is generated by elementary matrices
when A is a field, so that SL(A) = E(A) yielding K1(A) ∼= A∗. This also
occurs when A is a local ring or a Dedekind domain, for example if A = OF

is the ring of integers of a number field. In these situations it is also true that
SLn(A) = En(A) for n ≥ 3. However, Swan points out that A = Z[

√
−5] is a

counterexample for n = 2.
As noted above, there are several relationships among the elementary ma-

trices which are valid regardless of the ring A involved. There may be others,
though, which are dependent on the structure of A. Loosely speaking, the
abelian group K2(A) represents these non-trivial relations. To formalize this
construction, we introduce the Steinberg group Stn(A) for n ≥ 3, which has
one generator xij(λ) for each pair 1 ≤ i, j ≤ n with i 6= j and each λ ∈ A,
subject to the same relations satisfied by the eij(λ) above. For example, one
has xij(λ)xij(µ) = xij(λ+ µ) and [xij(λ), xjk(µ)] = xik(λµ) for distinct indices
i, j, and k. There is a natural embedding Stn(A) ↪→ Stn+1(A) by which we
can form the direct limit (union), denoted by St(A). Clearly the homomor-
phism from Stn(A) to En(A) taking xij(λ) to eij(λ) is surjective, so passing
to the limit we have a homomorphism φ : St(A) −→ GL(A) whose image is
exactly E(A). We define K2(A) to be the kernel of φ. These constructions are
summarized in the exact sequence

1 −→ K2(A) −→ St(A) −→ GL(A) −→ K1(A) −→ 1.

The fact that K2(A) is in fact abelian is due to a theorem of Steinberg.

Theorem: The center of St(A) is precisely K2(A).

Proof: We first claim that the only element in the center of E(A) is the identity.
For if y ∈ Z(E(A)), then y · eij(1) = eij(1) · y implies that yij = 0 and yii = yjj .
Hence y must be a scalar multiple of the identity in E(A). But the only element
with this property in E(A) is the identity itself, since elements can only differ
from the identity in a finite number of positions. It follows that if y ∈ Z(St(A))
then φ(y) ∈ Z(E(A)), and hence φ(y) = 1, so y ∈ K2(A) by definition. This
shows that Z(St(A)) ⊂ K2(A).

Demonstrating the reverse inclusion will require a little more work. Hence
suppose that y ∈ K2(A), meaning φ(y) = 1. Choose n large enough so that y is
a product of elements xkl(λ) with k.l < n. Let Pn be the subgroup of Stn(A)
generated by the elements xin(µ) with i < n. Then Pn is abelian by construction
and essentially free, in that an element of Pn can be written uniquely in the
form x1n(µ1) · · ·xn−1,n(µn−1). Consequently, φ maps Pn isomorphically onto
the subgroup of matrices in En(A) of the form

1 µ1

1 µ2

. . .

1 µn−1

1

 .

We claim that if p = xin(µ) for i < n then [y, p] ∈ Pn. This follows from
the observation that when k, l < n we have [xkl(λ), xin(µ)] = 1 or xkn(λµ), an
element of Pn either way. Since y is a product of the xkl(λ), it follows that
[y, p] ∈ Pn as desired. But φ([y, p]) = 1 because φ(y) = 1, and since φ maps
Pn isomorphically onto the matrix subgroup described above, we conclude that
µ1 = µ2 = · · · = µn−1 = 1, which means that [y, p] = 1. By a symmetrical
argument we deduce that [y, p] = 1 for p = xnj(µ) with j < n as well. But
elements of the form xin(µ) or xnj(µ) generate Stn(A), hence y is in the center
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of Stn(A). Passing to the limit as n → ∞, we conclude that φ(y) = 1 implies
that y ∈ Z(St(A)), which completes the proof.

Before continuing, we remark that if E(A) ∼= SL(A) and K2(A) = 1 (which
occurs when A is a finite field, as we shall see) then St(A) ∼= SL(A). In fact,
Stn(A) ∼= SLn(A) for n ≥ 5 in this case. Thus we have a presentation for
the groups SLn(A), which may have been Steinberg’s original motivation for
investigating the groups Stn(A). We also mention that the same does not apply
when A = Z: we have E(Z) = SL(Z), but it turns out that K2(Z) ∼= Z/2Z.
The latter fact is a bit surprising, perhaps, since one expects functors to be
“obvious” on Z.

The exact sequence 1 → K2(A) → St(A) → E(A) → 1 is an example
of a central extension, which we now define. If G is an arbitrary group, and
φ : X → G a surjective group homomorphism with ker(φ) ⊂ Z(X), then we call
the pair (X,φ) a central extension of G. This concept arose naturally in several
contexts. For example, in 1904 Schur showed that given a vector space V over
K and a projective representation ψ : G→ PGL(V ) = GL(V )/K∗, there exists
a central extension (G̃, π) of G which permits a lifting of ψ to ψ̃ : G̃→ GL(V ).
Briefly, the construction of G̃ goes as follows. For each u ∈ G let f̃(u) ∈ GL(V )
be a representative for ψ(u) ∈ PGL(V ). (We declare f̃(1) = 1.) Because ψ is
a homomorhpish we know that f̃(u)f̃(v) = f̃(uv)δ(u, v) for δ(u, v) ∈ K∗. Then
δ : G×G→ K∗ is a 2-cocycle (from group cohomology) and this gives rise to the
central extension G̃ = {(α, u)|α ∈ K∗, u ∈ G}, where π : G̃→ G is projection on
the second coordinate. The group law is given by (α, u)·(β, v) = (αβδ(u, v), uv),
and the lifting is given by ψ̃ : (α, u) 7→ f̃(u)α.

The concept of central extensions also appears in topology. Suppose that G
is a connected topological group (such as SLn(R)), and let π : X → G be a
covering of G by a connected topological space X. We claim that (X,π) is a
central extension of G. Suppose that n ∈ ker(π) and consider the homeomor-
phism ψ : X → X defined by ψ(x) = nxn−1. Since π ◦ ψ = π and ψ(1) = 1 we
conclude by properties of covering maps that ψ is the identity on the connected
component of X containing 1, i.e. nxn−1 = x on X, so n ∈ Z(X). Further-
more, if G is a connected Lie group, then we know there exists a universal cover
φ : G̃ → G which has the universal property that given any cover π : X → G,
there exists a unique morphism h : G→ X for which φ = π ◦ h.

We will look for a similar such algebraic object (U, ν) which is a central
extension of G and satisfies a corresponding universal condition, namely given
any central extension (X,φ) of G there is a unique homomorphism h : U → X
over G, i.e. such that φ ◦ h = ν. As usual, this universal property allows us to
conclude that (U, ν) is unique up to unique isomorphism, if it exists. To describe
universal central extensions we will need the concepts of perfect groups and split
extensions. We say that a group is perfect if it equals its commutator subgroup,
so that G = [G,G]. This condition will be analogous to the requirement of
connectedness imposed above. Next, we say that a central extension φ : X → G
splits if it admits a section s : G → X with φ ◦ s = idG. In this case the
extension is essentially trivial, since the sequence 1 → ker(φ) → X → G → 1
splits, yielding X ∼= G× ker(φ). With this terminology we may now assert that

Theorem: A central extension (U, ν) of G is universal if and only if U is perfect
and every central extension of U splits.

Proof: Let (X,φ) be any central extension of G, and first assume that every
central extension of U splits. This will imply the existence of a homomorphism
h : U → X over G. Look at the pull-back U ×G X = {(u, x)|ν(u) = φ(x)}, a
subgroup of U ×X. Let π1 and π2 be the projections onto the first and second
coordinates. Clearly ker(π1) is the set of elements (1, x) with φ(x) = 1. Hence
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x ∈ Z(X) since (X,φ) is a central extension. It follows that (1, x) ∈ Z(U×GX),
thus (U ×G X,π1) is a central extension of U . By hypothesis there is a section
s : U → U ×G X, and setting h = π2 ◦ s provides the desired homomorphism.
This construction is summarized in the commutative diagram below.

π1
U ×G X U

s

π2 h ν

φ
X G

We next show that h is unique if U is perfect.

Lemma 1: Let (X,φ) and (Y, ψ) be two central extensions of G and suppose
h : Y → X is a homomorphism over G, so that φ ◦ h = ψ. If Y is perfect, then
h is unique.

Proof: Let h1, h2 be two such maps over G. Then for all y ∈ Y , h1(y) = h2(y)x
for some x ∈ ker(φ) ⊂ Z(X). The same is true for any y′ ∈ Y , so we find by an
easy argument that h1([y, y

′]) = h2([y, y
′]). But Y is perfect, so generated by

elements of the form [y, y′]. This shows that h1 = h2.

An immediate application of the lemma shows that our map h above is
unique. We remark that given a central extension (Y, ψ) in which Y is not
perfect, it is not hard to produce an example of another central extension (X,φ)
and distinct homomorphisms h1, h2 over G. This shows that if U is universal,
then it must be perfect.

Lemma 2 If (X,φ) is a central extension of a perfect group G, then X ′ = [X,X]
is also perfect and φ restricted to X ′ is still surjective onto G.

Proof: Clearly φ(X ′) = φ([X,X]) = [φ(X), φ(X)] = [G,G] = G, which demon-
strates the surjectivity. Now for any x ∈ X we have φ(x) = φ(x′) for some
x′ ∈ X ′. Hence x = x′n for an n ∈ ker(φ) ⊂ Z(X). So for arbitrary x1, x2 ∈ X
it follows that [x1, x2] = [x′1, x

′
2]. But this is exactly what we need to show that

X ′ is perfect.

To complete the proof of the theorem it remains to show that if (U, ν) is a
universal extension of G, then every central extension of U splits. (We already
know that U is perfect.) So suppose that (X,φ) is a central extension of U .
We claim that (X, ν ◦ φ) is a central extension of G. The composite map is
clearly surjective. Now let ν(φ(x0)) = 1, which implies that φ(x0) ∈ Z(U).
Consider the homomorphism h0 : X → X defined by h0(x) = x0xx

−1
0 . Note

that φ(x) = φ(h0(x)) since φ(x0) is in the center of U . We now restrict to
h0 : X ′ → X ′, because X ′ is perfect by lemma two. Then h0 and the identity
map both commute with φ : X ′ → U , so by lemma one they must be the same
homomorphism, which shows that x0 commutes with all elements x′ of X ′. But
by lemma two φ : X ′ → U is surjective, so given any x ∈ X we have x = x′n for
some n ∈ ker(φ) ⊂ Z(X). Since x0 commutes with both x′ and n, it commutes
with x, so x0 ∈ Z(X), proving that (X, ν ◦ φ) is a central extension of G.

Finally, we employ the universal property of U to obtain the map h : U → X,
which will be the desired section. We know that ν ◦ φ ◦ h = ν, hence φ ◦ ν and
id : U → U are both homomorphisms over G, and hence are the same since U
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is perfect, by lemma one. This proves that h is a section, completing the proof.

h
X U

φ id

U ν

ν
G

Theorem: G has a universal central extension if and only if G is perfect.

Proof: To begin with, suppose that G has a universal central extension (U, ν).
Then because ν(U) = G and U is perfect it follows at once that G is perfect.

Conversely, suppose that G is perfect. There is a standard resolution of G
given by 1 → R → F → G → 1, where F is a free group with one generator
for each element of G, and the kernel R represents the relations among the
generators of F dictated by the group structure of G. Consider the subgroup
[R,F ] of F generated by all elements of the form rfr−1f−1. Since R is normal
in F then so is [R,F ], and in fact [R,F ] ⊂ R. Therefore we have a surjective
map

φ : F/[R,F ] −→ F/R ∼= G.

By construction ker(φ) is in the center of F/[R,F ]. It follows from lemma two
that (F/[R,F ])′ ∼= [F, F ]/[R,F ] is perfect. The restriction of φ to this subgroup
is still surjective, so it is a central extension.

We claim that ([F, F ]/[R,F ], φ) is in fact the universal central extension
of G. Suppose that (X,ψ) is any other central extension of G. Because F
is a free group on the elements of G and ψ is surjective, there is certainly a
homomorphism h : G → X which satisfies ψ ◦ h = π, where π : F → G is the
projection map. Now given r ∈ R we have π(r) = 1, so ψ(h(r)) = 1 implying
that h(r) ∈ ker(φ) ⊂ Z(X). Thus h(rfr−1f−1) = 1, so that h([R,F ]) = 1
and h factors to a homomorphism from F/[R,F ] to X. Finally, restricting
h to the subgroup [F, F ]/[R,F ] gives a homomorphism to X over G which
commutes with φ. By lemma one h must be unique, which establishes the
universal property.

The kernel of φ : [F, F ]/[R,F ] → G is the subgroup (R∩ [F, F ])/[R,F ], often
called the Schur multiplier of G, after the man who first introduced the concept
of a central extension. It is isomorphic to H2(G), as we shall see later when we
present a more general method for constructing the groups Kn(A) using tools
from algebraic topology.

We are now prepared to explain why St(A) is the universal central extension
of E(A). Clearly St(A) is perfect, since every generator xij(λ) = [xik(λ), xkj(1)]
for any k distinct from i and j. Now suppose that (X,φ) is a central extension
of St(A); we must show there exists a section s : St(A) → X. Given i 6= j and
λ ∈ A choose h distinct from i and j and y, y′ ∈ X such that φ(y) = xih(1) and
φ(y′) = xhj(λ). Then setting sij(λ) = [y, y′] is well-defined and by construction
φ(sij(λ)) = xij(λ). We now obtain the desired section by mapping xij(λ) to
sij(λ). (Note that this proof outline omits a page or two of algebra!) In general
Stn(A) is also the universal central extension of En(A) for n ≥ 5, but there are
a few exceptions for smaller n. For example, we shall soon see that K2(A) is
trivial when A is a finite field. Therefore St2(F4) = E2(F4) = SL2(F4). But
SL2(F4) ∼= PSL2(F5), which has SL2(F5) as a non-trivial cover. In other words,
no section exists for this central extension, so St2(F4) cannot be the universal
central extension of E2(F4). Similarly, the fact that SL3(F2) ∼= PSL2(F7) shows
that St3(F2) cannot be the universal central extension of E3(F2).
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Lectures 6–8: K-Theory, Part II

Our primary goal in what follows will be to construct a skew-symmetric,
bimultiplicative symbol {·, ·} : A∗ × A∗ → K2(A) when A is commutative and
prove that it satisfies the Steinberg relation {u, 1−u} = 1 when u, 1−u ∈ A∗. We
begin by developing a few relationships among the generators of the Steinberg
group St(A). Let

wij(u) = xij(u)xji(−u−1)xij(u), hij(u) = wij(u)wij(−1).

As usual φ : St(A) → E(A) is the homomorphism taking xij(u) to eij(u). One
can easily verify that

φ(wij(u)) =Wij(u) =



. . .

0 u
. . .

−u−1 0
. . .


differs from the identity matrix only in the four positions shown. (We are
assuming that i < j for these illustrations.) Similarly

φ(hij(u)) = Hij(u) =



. . .

u
. . .

u−1

. . .


.

By definition Wij(u) and Hij(u) are a product of elementary matrices, hence
lie in E(A).

In general suppose that (X,φ) is a central extension of G and denote ker(φ)
by N . There is a method for constructing elements of N given any two com-
muting elements g and h of G. Choose x, y ∈ X with φ(x) = g and φ(y) = h.
It is easy to check that the commutator [x, y] does not depend on the choice of
x and y; we denote the result by g ? h. Since g and h commute, φ([x, y]) = 1,
hence g?h ∈ N . We claim that ? is skew-symmetric, bimultiplicative, and invari-
ant under inner automorphisms. These facts will follow from the commutator
identities

i. [x, y]−1 = [y, x],

ii. [x1x2, y] = [x1, [x2, y]][x2, y][x1, y],

iii. [wxw−1, wyw−1] = w[x, y]w−1.

For example, to prove bimultiplicativity suppose that g1 and g2 each commute
with h, and let x1, x2, and y be lifts of these elements to X. Then

(g1g2) ? h = [x1x2, y]

= [x1, [x2, y]][x2, y][x1, y]

= [x1, y][x2, y] = (g1 ? h)(g2 ? h).

The factor of [x1, [x2, y]] vanishes because the inner commutator is in N (since
g2 and h commute), so it lies in the center of X. The other statements may be
proved in a similar fashion.
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Now suppose that A is a commutative ring and consider the universal central
extension

1 −→ K2(A) −→ St(A)
ϕ−→ E(A) −→ 1.

Clearly H12(u) and H13(v) are commuting elements of E(A) for any u, v ∈ A∗,
so we obtain the element H12(u) ?H13(v) = [h12(u), h13(v)] in K2(A), which we
denote by {u, v}. All the properties of ? transfer immediately, so we have a skew-
symmetric, bimultiplicative symbol {·, ·} : A∗ × A∗ → K2(A). We shall soon
see that {u, v} = [hij(u), hik(v)] for any distinct i, j, and k, so our definition
was fully general, in a sense. We will also see that [hij(u), hkl(v)] = 1, while
[hij(u), hij(v)] = {u, v}2, which explains why we avoided those cases.

The proof of these facts hinges on a key observation. First recall that the
permutation matrix Pσ associated with a permutation σ is the matrix with a
1 in row σ(i), column i for 1 ≤ i ≤ n and 0’s elsewhere. We embed Pσ in
GL(A) in the usual manner. Multiplication by Pσ on the left permutes the first
n rows according to σ; multiplication by P−1

σ on the right has the same effect
on the first n columns. We adopt the shorthand σ(ij) to represent the pair
σ(i), σ(j). Finally, let diag(v1, . . . , vn) denote the matrix in GL(A) with entries
v1, . . . , vn, 1, 1, . . . along the diagonal.

Theorem: Suppose W = Pσdiag(v1, . . . , vn) is an element of E(A), and choose
w ∈ St(A) with φ(w) =W . Then conjugation by w is given by

wxij(λ)w
−1 = xσ(ij)(viλv

−1
j ).

Proof: First note that the requirement that Pσdiag(v1, . . . , vn) ∈ E(A) forces
v1v2 · · · vn = sign(σ) = ±1 since E(A) ⊂ SL(A), so in particular the vi ∈ A∗

are invertible. We also point out that properties of central extensions ensure
that conjugation by w is independent of the choice of w. We claim that the map

ψ : xij(λ) 7→ xσ(ij)(viλv
−1
j )

gives rise to an automorphism of St(A). The map ψ is clearly a bijection on the
generators of St(A), so we need only check that ψ respects the relations among
them. This is routine to verify; for instance,

ψ([xij(λ), xjk(µ)]) = ψ(xik(λµ)) = xσ(ik)(viλµv
−1
k ).

On the other hand,

[ψ(xij(λ)), ψ(xjk(µ))] = [xσ(ij)(viλv
−1
j ), xσ(jk)(vjµv

−1
k )]

= xσ(ik)(viλv
−1
j vjµv

−1
k )

= xσ(ik)(viλµv
−1
k ),

the same result.
We now observe that there are two possible automorphisms of St(A) which

will make the diagram below commute, where the bottom homomorphism is
conjugation by W .

St(A)
?

−−− −→ St(A)

φ | φ |
↓ ↓

E(A)
W ·W−1

−−− −→ E(A)
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Clearly conjugation by w across the top makes the diagram commute since
φ(w) = W . To see that ψ : St(A) → St(A) also works we need only verify
commutativity on the generators xij(λ). On the one hand,

φ(ψ(xij(λ)) = φ(xσ(ij)(viλv
−1
j )) = eσ(ij)(viλv

−1
j ).

On the other hand, the reader may check that Weij(λ)W
−1 produces precisely

the same result by multiplying the corresponding matrices. But now we have
two central extensions of E(A), namely (St(A),W ·W−1 ◦ φ) and (St(A), φ),
and two homomorphisms between them over E(A). Since St(A) is perfect, we
conclude by lemma one that the homomorphisms are the same, which is the
statement of the theorem. Since Stn(A) is the universal central extension of
En(A) for n ≥ 5, an entirely analogous argument shows that the theorem holds
in the finite matrix situation as well when n ≥ 5.

Thus to determine the effect of conjugation by wij(u) in the Steinberg group
we need only write φ(wij(u)) = Wij(u) in the form PσD. This is accomplished
by σ = (i j) and D = diag(. . . ,−u−1, . . . , u, . . . ), where vi = −u−1, vj = u,
and all other vk = 1. Denoting this conjugation by ψ we discover that

wij(u) = ψ(wij(u)) = ψ(xij(u))ψ(xji(−u−1))ψ(xij(u))

= xji(−u−1)xij(u)xji(−u−1)

= wji(−u−1),

where we used ψ(xij(u)) = xσ(ij)(−u−1uu−1) = xji(−u−1) and similar compu-
tations in the middle step. This provides our first non-trivial relation among
the xij(u). To be precise, letting α = xij(u) and β = xji(−u−1) we have shown
that αβα = βαβ.

The equality just mentioned is an example of a braid relation, which we
pause to describe. Physically, a braid on three vertices consists of three pieces
of string fastened to a set of three pegs on either end, with any number of
crossings inbetween, as illustrated below. Two braids are equivalent if one can
be continuously shifted to match the second, such as the two shown.

A braid Equivalent braids

The set of all equivalence classes of braids form a group, with the group
operation given by attaching the end of one braid to the start of the next. We
illustrate this procedure on three simple braids labeled α, β, and ε.

α = β = ε =
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Here we have drawn the braids α ◦ β, β ◦ α, and ε ◦ α.

α ◦ β = β ◦ α = ε ◦ α =

From these examples it should be clear that this braid group is not commu-
tative and has ε as the identity. The reader is invited to construct the braid
representing α−1 and also verify that αβα = βαβ, hence the name “braid re-
lation.” In fact, α and β generate this braid group and satisfy αβα = βαβ as
the sole relation. In general, the braid group on n vertices is generated by the
n− 1 left-over-right crossings on adjacent vertices, subject to the relations that
crossings with no vertices in common commute, while crossings with a vertex in
common, such as α and β, satisfy the braid relation.

As a second application of the theorem, we show that our definition of
{u, v} = [h12(u), h13(v)] is independent of the indices chosen. Given distinct
positive integers i, j, and k select an even permutation σ ∈ Sn with σ(i) = 1,
σ(j) = 2, and σ(k) = 3. (Such a permutation always exists for n large enough.)
Let D = diag(1, . . . , 1) be the identity matrix, so vm = 1 for all m. Then
PσD ∈ E(A), and choosing w ∈ St(A) with φ(w) = PσD we conclude by our
theorem that conjugation by w maps xlm(u) 7→ xσ(lm)(u). Using property iii.
of the commutator identities listed above we deduce that

[hij(u), hik(v)] = w[hij(u), hik(v)]w
−1

= [whij(u)w
−1, whik(v)w

−1]

= [hσ(ij)(u), hσ(ik)(v)]

= [h12(u), h13(v)] = {u, v}.

Here we used the fact that hij(u) is a product of six generators, so whij(u)w
−1

is a product of corresponding generators with the indices i, j, and k replaced
by 1, 2, and 3, yielding h12(u), and similarly for h13(v).

In general, let U = diag(u1, . . . , un) and V = diag(v1, . . . , vn) with the
stipulation that

∏
ui =

∏
vi = 1. Setting m = n+1 and m′ = n+2 for ease of

notation we see that U, V ∈ E(A) by writing

U = H1m(u1)H2m(u2) · · ·Hnm(un), V = H1m′(v1)H2m′(v2) · · ·Hnm′(vn).

Observe that Hij(u) ? Hkl(v) = [hij(u), hkl(v)] = 1 when the indices are all
distinct, because every generator in the product for hij(u) commutes with every
one in hkl(v). Combining this fact with the bimultiplicativity of ? we find that

U ? V =

(
n∏

i=1

Him(ui)

)
?

 n∏
j=1

Hjm′(vj)


=

n∏
i,j=1

Him(ui) ? Hjm′(vj)

=

n∏
k=1

Hkm(uk) ? Hkm′(vk)

=

n∏
k=1

{uk, vk}.
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Therefore the subgroup of K2(A) containing U ? V for all pairs of diagonal
matrices is generated by the elements {u, v}. Finally, we mention that in many
cases we lose nothing by restricting ourselves to elements of the form {u, v} in
K2(A), since in these cases any pair of commuting matrices U and V can either
be reduced to the case of diagonal matrices, or will automatically give U ?V = 1
in K2(A) by the nature of its construction. For instance, Matsumoto has shown
that K2(F ) is generated by the elements {u, v} when F is a field or skew-field.

Let us now prove a fundamental property of the symbol {·, ·}.

Theorem: (Steinberg) Let A be a commutative ring, and let u, v ∈ A∗ be
invertible elements with u+ v = 1. Then {u, v} = 1.

Proof: By definition, {u, v} = [h12(u), h13(v)], so showing that {u, v} = 1 is
equivalent to proving that conjugation by h12(u) fixes h13(v). Let ψ denote
conjugation by h12(u). Since φ(h12(u)) = PσD for the identity permutation
σ and D = diag(u, u−1), we conclude that the action of ψ on generators is
xij(v) 7→ xij(vivv

−1
j ) where v1 = u, v2 = u−1, and vi = 1 for i ≥ 3. Therefore

ψ(w13(λ)) = w13(uλ) and we have

ψ(h13(v)) = ψ(w13(v))ψ(w13(−1) = w13(uv)w13(−u).

So checking that ψ fixes h13(v) boils down to verifying that w13(v)w13(−1) =
w13(uv)w13(−u), or that

w13(v)w31(1)w13(u) = w13(uv),

since w13(u)
−1 = w13(−u) from the definitions and wij(λ) = wji(−λ−1). Before

plunging into the algebraic morass we first recall that conjugation by w13(λ)
corresponds to the transposition σ = (1 3) and the diagonal entries v1 = −λ−1,
v3 = λ. Thus

w13(v)x31(1) = x13(−v2)w13(v), and w13(u)x13(−u2) = x31(1)w13(u).

We are now able to compute

w13(v)w31(1)w13(u)

= w13(v)x31(1)x13(−1)x31(1)w13(u)

= x13(−v2)w13(v)x13(−1)w13(u)x13(−u2)
= x13(−v2)x13(v)x31(−v−1)x13(v)x13(−1)x13(u)x31(−u−1)x13(u)x13(−u2)
= x13(v − v2)x31(−v−1)x13(u+ v − 1)x31(−u−1)x13(u− u2)

= x13(uv)x31(−u−1 − v−1)x13(uv)

= x13(uv)x31(−(uv)−1)x13(uv)

= w13(uv).

Here we used the fact that x13(u + v − 1) = x13(0) = 1 and −u−1 − v−1 =
−(uv)−1, which follows from u+ v = 1.

Matsumoto proved in his thesis that if F is a field, then K2(F ) is generated
by elements of the form {u, v}, with u, v ∈ F ∗. Furthermore, he demonstrated
at the same time that the generators {u, v} are subject only to the relations
(and their consequences) that we have seen so far, namely

i. {u, v}−1 = {v, u},

ii. {u1u2, v} = {u1, v}{u2, v},

iii. {u, 1− u} = 1.
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Let us derive a few of the formal consequences of these relations. The first
two conditions easily imply that {·, ·} is multiplicative in the second variable.
Equally clearly we find that {u, 1} = {1, v} = 1 and {u−1, v} = {u, v−1} =
{u, v}−1. The Steinberg relation also implies that {u,−u} = 1. For if u ∈ F ,
u 6= 0, 1 then the identity −u = (1− u)/(1− u−1) yields

{u,−u} = {u, 1− u}{u, 1− u−1}−1 = {u, 1− u}{u−1, 1− u−1} = 1.

The same argument shows that if A is a commutative ring and u, 1 − u ∈ A∗

then {u,−u} = 1.
Now suppose that F is a field, G is an abelian group, and c : F ∗ × F ∗ → G

is any map satisfying the three relations above, and hence the consequences
just derived as well. We call c a Steinberg symbol. Matsumoto’s theorem then
states that K2(F ) is universal in the sense that there is a unique homomorphism
h : K2(F ) → G for which c = h ◦ {·, ·}. Equivalently, the set of symbols
c : F ∗ × F ∗ → G is in one-to-one correspondence with the set Hom(K2(F ), G).

Up to this point we have defined K2(A) and developed a number of interest-
ing properties concerning this abelian group, but have yet to actually compute
K2(A) for any ring of interest, or even show that it is non-trivial. We shall now
rectify this state of affairs. By definition, if a product of elementary matrices
eij(λ) is the identity in E(A), then the corresponding product of generators
xij(λ) in St(A) will lie in K2(A). Because the relations among the generators
were designed to mimic those among the elementary matrices, the product will
usually, but not always, be the identity in K2(A). For instance, consider

T =

[
0 1

−1 0

]
=W12(1) = φ(w12(1)) = φ(x12(1)x21(−1)x12(1)).

Since T 4 = I is the identity matrix, then (x12(1)x21(−1)x12(1))
4 ∈ K2(A)

is such a product. As an exercise, show that this product equals {−1,−1}.
In the case A = Z we obtain a non-trivial element, which in fact generates
K2(Z) ∼= Z/2Z.

With a little more effort we can demonstrate thatK2(R) also has {−1,−1} as
a non-trivial element. Let H be the Hamiltonian quaternion algebra with basis
elements 1, i, j, and k over R satisfying the usual multiplication rules. If α =
α01+α1i+α2j+α3k is a quaternion then its norm is N(α) = α2

0+α
2
1+α

2
2+α

2
3.

Let H1 be the subgroup of the quaternions with norm one. Then there is an
exact sequence

1 −→ {±1} −→ H1 −→ SO3(R) −→ 1

in which α ∈ H1 is taken to the transformation x 7→ αxα−1. Here we treat
x = (x1, x2, x3) ∈ R3 as a pure quaternion x = x1i + x2j + x3k to define the
image in the special orthogonal group. The elements i and j are mapped to the
transformations represented by the matrices

i 7→

 1 0 0
0 −1 0
0 0 −1

 , j 7→

 −1 0 0
0 1 0
0 0 −1

 .
Using the natural embedding SO3(R) ↪→ SL3(R) ⊂ SL(R) and employing topo-
logical arguments, one can show that [i, j] = −1 implies that {−1,−1} = −1 in
K2(R). The details are left to the reader. Since Z ↪→ R there is a natural map
K2(Z) → K2(R) sending {−1,−1}Z 7→ {−1,−1}R, which shows once again that
{−1,−1} is non-trivial in K2(Z). It turns out that K2(R) ∼= Z/2Z × D for a
divisible group D with the same cardinality as R.

Let us now prove that
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Theorem: K2(Fq) = 0 for a finite field.

This means that St(Fq) ∼= SL(Fq), giving a description of SL(Fq) in terms of
generators and relations. (We also have Stn(Fq) ∼= SLn(Fq) for n ≥ 5.)

Proof: By Matsumoto’s theorem it suffices to show that {u, v} = 1 for all
u, v ∈ F∗

q . We know that F∗
q is cyclic of order q − 1; let t be a generator of this

group. For arbitrary u, v ∈ Fq write u = ti, v = tj , so that {u, v} = {t, t}ij .
Therefore it suffices to show that {t, t} = 1. By skew-symmetry, {t, t} = {t, t}−1,
so {t, t} = ±1. We first suppose that q = 2r, so that q − 1 is odd. In this case

{t, t}q−1 = {t, tq−1} = {t, 1} = 1,

which rules out {t, t} = −1, so {t, t} = 1 as desired. Otherwise we have q = pr

for an odd prime p, so q − 1 is even. We claim there are elements u = ti and
v = tj in F∗

q such that u + v = 1 and i, j are both odd. (I.e. u and v are
non-squares in Fq.) Assuming this, we would have

1 = {u, v} = {t, t}ij ,

which forces {t, t} = 1 as before.
To establish the claim, consider the q ordered pairs (u, 1 − u) as u varies

over all elements of Fq. Each element of Fq appears exactly twice in this list,
once in the first place and once in the second. Including 0, there are exactly
1
2 (q + 1) squares in Fq, hence q + 1 appearances of squares in our list. Four of
them appear in the pairs (0, 1) and (1, 0); the remaining q − 3 are distributed
among the other q − 2 pairs in some fashion, which proves the existence of at
least one pair (u, 1− u) in which neither entry is a square in Fq.

One of the simplest instances of a Steinberg symbol, called a tame symbol,
arises when we impose a discrete valuation ν on a field F . Let A ⊂ F be the
valuation ring and m ⊂ A its unique maximal ideal with residue field k = A/m.

Proposition: The tame symbol (·, ·)ν : F ∗ × F ∗ → k∗ defined by

(x, y)ν = (−1)ν(x)ν(y)
xν(y)

yν(x)
mod m

is a Steinberg symbol.

For example, if X is a Riemann surface with w ∈ X then we can take F = C(X)
to be the field of complex-valued meromorphic functions onX and the valuation,
which we also call w, to measure the order of vanishing of a function x ∈ F
at w. Thus w(x) = −1 means that x has a simple pole at w. So if t is a local
parameter for two functions x and y in a neighborhood of w and x = ant

n+ · · · ,
y = bmt

m + · · · for m,n ∈ Z then

(x, y)w = ±a
m
n t

mn + · · ·
bnmt

mn + · · ·
mod m = ±a

m
n

bnm
∈ C∗,

since m is the ideal generated by t, that is, functions with a zero at w.

Proof: Verification of skew-symmetry and bimultiplicativity follow at once from
properties of valuations. To show that (x, y)ν = 1 when x+ y = 1 we consider
several cases. Since ν(x+ y) = 0, so we can’t have both ν(x) > 0 and ν(y) > 0.
First suppose that ν(x) = 0, ν(y) > 0, meaning y ∈ m. Then we compute

(x, y)ν = (−1)0
(1− y)ν(y)

y0
mod m = 1.
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Similarly, we discover that (y, x)ν = 1 when ν(x) > 0, ν(y) = 0, which shows
(x, y)ν = 1 by skew-symmetry. The statement is clearly true for ν(x) = 0,
ν(y) = 0, so we next consider ν(x) < 0, say ν(x) = −n for n ∈ N. Then 1

x ∈ m,
and properties of ν require ν(1− x) = ν(y) = −n as well, hence

(x, y)ν = (−1)n
2 x−n

(1− x)−n
mod m =

(
1− 1

x

)n

mod m = 1.

This exhausts all possible cases, so the assertion is proved.

A second example of a Steinberg symbol is given by the Hilbert symbol. Let
F = Qp (resp. F = R), and for a, b ∈ F ∗ define (a, b)p (resp. (a, b)∞) to equal 1
if ax2 + by2 − z2 = 0 has a non-trivial solution in F and to equal −1 otherwise.
In this case the Steinberg relation is clear, since (x, y, z) = (1, 1, 1) is a non-
trivial solution when a + b = 1. Skew-symmetry is also obvious, but proving
bimultiplicativity takes some effort. When F = R we see that (a, b)∞ = −1 if
and only if a, b < 0, correlating to the fact that {−1,−1} = −1 in K2(R).

Now we will outline the work of Quillen in defining higher K-groups, for
which he was awarded the Fields medal. His idea was to define Kn(A) for
n ≥ 2 in terms of the fundamental groups of a certain extended classifying
space of GL(A). This yields a definition which is both compatible with Milnor’s
construction of K2(A) and possess all the general properties one would hope for,
such as the existence of long exact sequences. There is also good computational
evidence that Quillen’s definition is a “correct” way to define higher K-groups.

A similar (and related, we shall see) situation arose with group cohomology.
For a group G, satisfactory definitions for H0(G), H1(G), and H2(G) had been
developed and the question naturally arose as to the best way to extend these
to a whole sequence of homology groups Hn(G). One satisfactory approach
implements the fundamental groups πn(X) of algebraic topology. Recall that
πn(X) as a set consists of homotopy classes of continuous maps f : Sn → X
with a fixed basepoint. For any group G there is a classifying space BG with
the property that π1(BG) = G and πn(G) = 0 for n > 1. We then define Hn(G)
to equal Hn(BG).

For a topological space X we know that π1(X)ab = H1(X). We have already

seen that K1(A) = GL(A)/E(A) = GL(A)ab, so taking G = GL(A) we have

K1(A) = Gab = π1(BG)
ab = H1(BG).

If we have a presentation 1 → R → F → π1(X) → 1 for π1(X) then Hopf
showed that

(R ∩ [F, F ])/[R,F ] ∼= H2(X)/im(h2),

where hn : πn(X) → Hn(X) is the Hurewicz map. Applying these ideas to
X = BG we find π1(BG) ∼= G, π2(BG) = 0, and

(R ∩ [F, F ])/[R,F ] ∼= H2(BG) = H2(G).

But when G is a perfect group the left-hand side is exactly ker(φ) in our con-
struction of a universal central extenstion of G, so H2(G) is a Schur multiplier.
In particular, using G = E(A) we conclude that K2(A) = H2(E(A)).

We now discuss Quillen’s “+-Construction” for defining higherK-groups. As
above we consider the classifying space BG of G = GL(A), except we extend it
to a topological space BG+ by adjoining certain 2-cells, then some other 3-cells
to compensate. The addition of the 2-cells is designed so that

π1(BG
+) = K1(A) = Gab.
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The addition of the extra cells do not affect the homology groups, i.e.Hn(BG
+) =

Hn(BG) = Hn(G). However, the fundamental groups are no longer trivial, and
we declare that Kn(A) = πn(BG

+). This definition does in fact agree with our
earlier description of K2(A).

Although the fundamental groups πn(X) are notoriously difficult to com-
pute, there is computational evidence to recommend this approach. For exam-
ple, Quillen has shown that K2m(Fq) = 0 while K2m−1(Fq) = Z/(qm − 1)Z.
This fits in with Borel’s theorem, which implies that

−ζFq (−m)−1 = #K2m−1(Fq).

Here #G means the order of the finite group G, and ζFq (s) = (1 − q−s)−1. In
the 1970’s it was shown that K3(Z) ∼= Z/48Z. More recently the computations
K4(Z) = 0 and K5(Z) ∼= Z were made. It is conjectured that K22(Z) ∼= Z/691Z;
the relevance of 691 being that it is the twelfth Bernoulli number.

The real usefulness of Quillen’s +-construction can be seen, for instance, in
the long exact localization sequence of a number field F :

0 → K2m(OF ) → K2m(F ) →
⊕
p

K2m−1(OF /p) →
→ K2m−1(OF ) → K2m−1(F ) → 0.

The zeros appear because of the fact that K2m(F ) = 0 when F is a finite field.
Soulé showed that the final two groups are isomorphic for all m ≥ 1, so the
sequence may be shortened to

0 → K2m(OF ) → K2m(F ) →
⊕
p

K2m−1(OF /p) → 0.

For m = 1 the final map is given by tame symbols. More precisely, let ν be the
valuation corresponding to a given prime p ⊂ OF . Then the homomorphism
(·, ·)ν : F ∗×F ∗ → K1(OF /p) = (OF /p)

∗ factors through K2(F ) by its universal
property. The resulting map λν is given by {a, b} 7→ (a, b)ν for a, b ∈ F ∗. Due to
this result we can describe K2(OF ) as the intersection of the subgroups ker(λν)
in K2(F ) over all valuations ν. The upshot is that K2(OF ) can be computed in
many cases. For example, Tate handled F = Q(

√
−d) for several small positive

values of d using this method.
Belabas and Gangl have adapted Tate’s method to the computer, producing

an algorithm which gives explicit generators for the group K2(OF ) along with
bounds on their orders. In many cases this algorithm yields an effective proof
of the structure of K2(OF ). In particular, they have shown that when F =
Q(

√
−303), then K2(OF ) ∼= Z/22Z is generated by

{ 1
2 (−37− 3

√
−303), 12 (−73 +

√
−303)}5.

The exponent is needed to guarantee that the resulting element of K2(F ) is
in the kernel of every map λν . The algorithm mimics a standard approach to
computing class groups, in that it finds a small set of generators, then produces
relations among them, yielding a group K̃2(OF ) of which K2(OF ) is a quotient.
If enough relations are found then certain bounds demonstrate that these two
groups are the same, accomplishing the task.
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Lectures 9–10: Mahler Measure

Let P ∈ C[x1, x−1
1 , . . . , xn, x

−1
n ] be a non-zero Laurent polynomial in n vari-

ables. We define the (logarithmic) Mahler measure of P as

m(P ) =
1

(2πi)n

∫
Tn

log |P (x1, . . . , xn)|
dx1
x1

· · · dxn
xn

,

where Tn is the n-torus; that is, the set of points (x1, . . . , xn) ∈ Cn for which
|xj | = 1, 1 ≤ j ≤ n. Since we may have P = 0 on the n-torus it is not
immediately clear that this integral necessarily converges; however, we shall
soon show that it does, giving a well defined function on Laurent polynomials.
By making the change of variables xj = eiθj we may rewrite our definition in
the form

m(P ) =
1

(2π)n

∫
[0,2π]n

log |P (eiθ1 , . . . , eiθn)| dθ1 · · · dθn.

Thusm(P ) is the average of log |P | over the n-torus, and the exponential Mahler
measure M(P ) = em(P ) is the geometric mean of |P | over the n-torus.

Historically, Mahler measure played an important role in Lehmer’s optimiza-
tion of a technique for finding large primes first introduced by Pierce. In a paper
in 1918 Pierce suggested restricting the search for large primes to numbers of a
special form, as follows. Consider a polynomial P (x) ∈ Z[x] of degree d which
factors over C as P (x) = (x− α1) · · · (x− αd). We claim that the quantity

∆n =

d∏
j=1

(αnj − 1)

is an integer. One way to see this is to let ξ = e2πi/n and write

∆n =

d∏
j=1

n∏
k=1

(αj − ξk) =

n∏
k=1

(−1)dP (ξk).

Each factor P (ξk) is an algebraic integer in a cyclotomic extension of Q, and
the entire expression splits neatly into a product of norms, each of which must
be an integer. For example, when n = 6 we know F = Q(ξ) = Q(

√
−3) is a

quadratic extension; let σ :
√
−3 7→ −

√
−3 be the non-trivial automorphism.

Then we have

∆6 =

6∏
k=1

(−1)dP (ξk)

= P (1) · P (−1) · (P (ξ)σ(P (ξ)) · (P (ξ2)σ(P (ξ2)
= P (1)P (−1)NF/Q(P (ξ))NF/Q(P (ξ

2)) ∈ Z.

Another approach is to argue that ∆n equals the resultant of P (x) and xn − 1,
up to sign, and hence must be an integer.

The advantage of testing ∆n for primality is that prime divisors of such
integers must satisfy a number of congruence conditions. For instance, taking
P (x) = x − 2 yields the familiar case of ∆n = 2n − 1, the Mersene primes.
Here we must have n = q, a prime, and p ≡ 1 mod q, p ≡ ±1 mod 8. Using
a modification of the above argument one can show that ∆n/∆m is an integer
when m|n, since the quotient will also be a product of norms. For example,

∆6/∆3 = P (−1)NF/Q(P (ξ)) ∈ Z.

29



This observation limits our search for primes to the integers ∆q/∆1, q prime.
Using these ideas applied to the polynomial P (x) = x3+x+1 Pierce was able to
demonstrate that ∆61/∆1 = 4459734401 was prime with only 169 trial divisions,
compared to the 6655 ordinarily needed for a number of that magnitude.

In order to maximize the gain in the reduction of trial divisions needed one
wants to find P (x) for which the integers ∆n grow as slowly as possible. Lehmer
observed that as long as P (x) does not vanish at any roots of unity then

1

n
log |∆n| =

1

n

n∑
k=1

log |P (ξk)|

∼ 1

2π

∫ 2π

0

log |P (eiθ)| dθ

= m(P ).

Thus ∆n ∼ M(P )n, which shifts the focus to finding polynomials with small
Mahler measure. An indispensable tool for analyzing the integrals involved is
due to Jensen.

Theorem: (Jensen’s formula) Let f(x) be a holomorphic function on an open
set containing the unit disc, with f(0) 6= 0. If α1, . . . , αt are the roots of f(x)
inside or on the unit disc, listed according to their multiplicity, then

1

2π

∫ 2π

0

log |f(eiθ)| dθ = log |f(0)| −
t∑

j=1

log |αj |.

If f(x) = P (x) = a(x − α1) · · · (x − αd) is a polynomial with αj 6= 0 then
log |f(0)| = log |a|+ log |α1|+ · · ·+ log |αd|, so Jensen’s formula implies that

m(P ) = log |a|+
d∑
j=1

log+ |αj |,

where we define log+ |x| to equal log |x| for |x| ≥ 1, while log+ |x| = 0 otherwise.
(Note that this formula is valid even if P (0) = 0.) Equivalently, this result may
be written as

M(P ) = |a|
d∏
j=1

max{1, |αj |}.

We remark that m(P1P2) = m(P1)+m(P2) andM(P1P2) =M(P1)M(P2). It is
now clear that M(P ) ≥ 1 for P (x) ∈ Z[x]. For purposes of searching for primes
the case M(P ) = 1 is not interesting; as we shall see the values of ∆n repeat
periodically and hence do not grow. Lehmer’s goal was to find P (x) for which
M(P ) was greater than 1 but as close as possible, so that the ∆n grew slowly.
Evidently one should look for monic polynomials with all but one root inside or
on the unit circle, with the remaining root is as near the unit circle as possible.
The table below lists the optimal such polynomials by degree for 1 ≤ d ≤ 5.

degree optimal P (x) M(P ) ≈
1 x− 2 2.000
2 x2 − x− 1 1.618
3 x3 − x− 1 1.324
4 x4 − x3 + 1 1.380
5 x5 − x4 + x3 − x+ 1 1.349

Lehmer’s best result, which remains unbroken even in the computer age, was
P (x) = x10+x9−x7−x6−x5−x4−x3+x+1, for which M(P ) ≈ 1.176. One
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marvels at how he unearthed this polynomial, which has eight complex roots on
the unit circle, and two real roots located just above and below 1.

The interested reader may wonder how these polynomials fare at producing
large primes. The degree five polynomial listed has P (1) = 1, so ∆1 = −1
and our candidates for primes are |∆q| for q prime. For 2 ≤ q ≤ 71 (the first
twenty primes), |∆q| is a prime in twelve cases, including |∆71| = 1762072889.
However, beginning with q = 127, the thirty-first prime, |∆q| is divisible by
steadily (but not quite monotonically) increasing powers of two. By the time
q = 541, the hundredth prime, |∆q| is divisible by 2182.

The degree ten polynomial found by Lehmer behaves even more curiously.
To begin with, ∆1 = −1 as before. In fact, |∆n| = 1 twenty-two times, including
|∆q| = 1 for ten of the first twelve prime values of q. More suprising, perhaps,
is the fact that |∆n| is a perfect square for all 1 ≤ n ≤ 162. Furthermore, for
primes q in this range (the first thirty-seven primes), |∆q| is either equal to 1 or
the square of a prime. So in a sense the |∆q| are extremely reliable in producing
primes. However, |∆163| = 2 · 52 · 1313590206173 interrupts this pattern. (The
appearance of 163 here seems remarkable.) For primes q ≥ 163, |∆q| appears
to be either a perfect square or a product of several smaller factors and a single
large prime to the first power.

We asserted above that for P (x) ∈ Z[x] the values of ∆n were periodic when
M(P ) = 1. This behavior is explained by a result of Kronecher, for which we
will need the following bound.

Lemma: If P (x) = adx
d + · · ·+ a1x+ a0 then |am| ≤

(
d
m

)
M(P ).

Proof: We know that am/ad equals a symmetric sum of the roots αj of P (x),

up to sign. This sum involves
(
d
m

)
terms, each of which is a product of d−m of

the roots. Clearly the absolute value of each term is less than
∏

max{1, |αj |},
the product over all the roots. Therefore by the triangle inequality

|am| = |ad| ·
∣∣∣∣amad

∣∣∣∣ ≤ |ad|
(
d

m

) d∏
j=1

max{1, |αj |} =

(
d

m

)
M(P ),

according to the product formula for M(P ). Equality can be obtained by the
polynomial P (x) = (x+ 1)d, for instance.

Proposition: (Kronecher) A polynomial P (x) with integral coefficients satisfies
M(P ) = 1 if and only if P (x) is cyclotomic; that is, P (x) has leading coefficient
±1 and roots which are either zero or roots of unity.

Proof: Let P (x) = a
∏
(x−αj) have degree d. If P (x) is cyclotomic then |a| = 1

and |αj | = 0 or 1 for all j, so clearly M(P ) = 1. Conversely, if M(P ) = 1 then
a = ±1, and after factoring out the largest power of x dividing P (x) it is not
hard to see that |αj | = 1 for all roots αj 6= 0. However, we do not know a priori
that the αj are roots of unity.

To establish this fact, let Pk(x) = ak
∏
(x− αkj ) =

∑
akmx

m. By definition

M(Pk) = M(P )k = 1, so the lemma gives |akm| ≤
(
d
m

)
for all k. (In fact,

Pk(x) ∈ Z[x], but our lemma applies to any polynomial with complex coeffi-
cients.) Hence there are a finite number of choices for each coefficient of Pk(x),
so Pk(x) = Pl(x) for some positive integers k and l. In particular, these polyno-
mials have the same roots, so αkj = αlσ(j) for some permutation σ ∈ Σd. From
here it is easy to argue that each root αj must satisfy an equation of the form
αMj = αNj for positive integers M < N , so is either 0 or a root of unity.

In general let P (x1, . . . , xn) =
∑
am1···mnx

m1
1 · · ·xmn

n be a polynomial in n
variables such that P is of degree dj in the variable xj . Then the lemma above
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can be generalized via an induction to show that

|am1···mn | ≤
(
d1
m1

)
· · ·

(
dn
mn

)
M(P ).

Assuming that P 6= 0, this gives a positive lower bound forM(P ), which implies
that m(P ) > −∞. Thus to conclude that m(P ) exists for polynomials, we need
only prove that m(P ) is bounded above. Using the fact that log |x| < |x| and
the triangle inequality we find that

m(P ) =
1

(2π)n

∫
[0,2π]n

log |P (eiθ1 , . . . , eiθn)| dθ1 · · · dθn

<
1

(2π)n

∫
[0,2π]n

|P (eiθ1 , . . . , eiθn)| dθ1 · · · dθn

≤ 1

(2π)n

∫
[0,2π]n

(∑
|am1···mn

|
)
dθ1 · · · dθn

=
∑

|am1···mn
|.

Hence m(P ) <∞, so Mahler measure exists for all non-zero polynomials P . We
shall soon see that for any Laurent polynomial Q we have m(Q) = m(P ) for
some polynomial P , ensuring that m(Q) exists in general.

Mahler was interested in relating the “size” of polynomials to the “size” of
their product, and he used the expression ‖P‖ =

∑
|am1···mn

| to define “size.”
We have seen that m(P ) < ‖P‖; Mahler showed that in fact M(P ) ≤ ‖P‖.
(The reader may wish to attempt a proof in the one variable case using the
product formula for M(P ). The Hardy-Littlewood-Polya inequality may be
implemented to obtain a general proof.) Next, using the bound on |am1···mn |
stated above and summing over all coefficients yields

‖P‖ ≤
∑(

d1
m1

)
· · ·

(
dn
mn

)
M(P ) = 2d1+···+dnM(P ),

with equality when P (x1, . . . , xn) = (x1 + 1)d1 · · · (xn + 1)dn .
We can now demonstrate Mahler’s main result. Let P1, . . . , PN each be

polynomials in n variables, and denote the degree of xj in Pk by djk. Also set
Dj =

∑
djk, the degree of xj in the product of the Pk. The above inequalities

imply that

N∏
k=1

‖Pk‖ ≤
N∏
k=1

2d1k+···+dnkM(Pk)

= 2D1+···+DnM(
∏
Pk)

≤ 2D1+···+Dn‖
∏
Pk‖,

since M(P ) is multiplicative. The final result is a statement only about ‖P‖,
although its proof uses Mahler measure in a crucial way.

To avoid cumbersome notation, we implement the multi-index notation in
our discussion of Laurent polynomials P (x1, . . . , xn) ∈ C[x1, x−1

1 , . . . , xn, x
−1
n ].

For m = (m1, . . . ,mn) ∈ Zn we write xm to mean xm1
1 · · ·xmn

n . Thus we can
write

P (x) =
∑

m∈Zn

amx
m, almost all am = 0.

To each Laurent Polynomial P we can associate its Newton polytope ∆P , the
convex hull of the set of points {m ∈ Zn|am 6= 0}. When n = 2 we will often
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present P by simply listing each non-zero coefficient am at the point m in Z2.
Thus P (x, y) = 3y − xy + 2x2y − 2x−1 + 4 + 5xy−1 would be written

|

3 −1 2
— −2 4 —

5

|

with the axes indicated by the line segments. In this case ∆P is a quadrilateral
with two interior points and one point along the boundary. Notice that for a
vector m and polynomial P (x), multiplication by xm corresponds to a transla-
tion by m of the Newton polytope. In other words, ∆xmP = ∆P +m. Mahler
measure is clearly unaffected by such multiplication (i.e. m(xmP ) = m(P )),
since log |xm| = 0 on Tn. Therefore we will often neglect to specify the origin
when presenting a polynomial via its Newton polytope.

The action of GLn(Z) on Zn also preserves the combinatorial aspects of ∆P

and the value of m(P ). To be precise, for A ∈ GLn(Z) we let A act on Laurent
polynomials of n variables via A : xm 7→ xAm. This corresponds to the usual
action of A on Zn when we consider Newton polytopes. Thus ∆A(P ) = A(∆P ),
and A(∆P ) has the same number of interior points, boundary points, and ver-
tices as ∆P by properties of general linear transformations.

We claim that Mahler measure is preserved by A, so that m(A(P )) = m(P ).
To see why, letB = A−1 and declare the change of variables φ : Tn → Tn defined
by

φ(x1, . . . , xn) = (xb111 · · ·xbn1
n , . . . , xb1n1 · · ·xbnn

n ) = (y1, . . . , yn).

This change of variables is set up precisely so that A(P (φ(x))) = P (x). Com-
puting the matrix of partials reveals that∣∣∣∣∂y∂x

∣∣∣∣ = xb11+···+b1n−1
1 · · ·xbn1+···+bnn−1

n |B|.

Note that B ∈ GLn(Z) implies that |B| = 1. Since φ is a diffeomorphism of Tn
we conclude by the change of variable theorem that

(2πi)nm(A(P )) =

=

∫
Tn

log |A(P (y))| dy1
y1

· · · dyn
yn

=

∫
Tn

log |A(P (φ(x)))|x
b11+···+b1n−1
1 · · ·xbn1+···+bnn−1

n |B|
(xb111 · · ·xbn1

n ) · · · (xb1n1 · · ·xbnn
n )

dx1 · · · dxn

=

∫
Tn

log |P (x)| dx1
x1

· · · dxn
xn

= (2πi)nm(P ).

The result m(A(P )) = m(P ) is actually valid for any A ∈ Mn(Z) with
|A| 6= 0. For example, in the one-variable case consider m(P (x3)). Making the
change of variables φ(x) = x3 = y we find that

3

∫
T1

log |P (y)| dy
y

=

∫
T1

log |P (x3)| · 3dx
x
,

which implies that m(P (x)) = m(P (x3)). The initial factor of three stems from
the fact that φ : T1 → T1 is no longer a diffeomorphism, but a three-fold cover.
The general proof requires more intricate bookkeeping, so we omit it.
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Let ∆ be the Newton polytope of a Laurent polynomial P and let τ be a
facet (face of codimension 1) of ∆. Choose a linear embedding ψ : Zn−1 ↪→ Zn
whose image is the set of lattice points lying on the hyperplane containing τ .
Then we can construct a Laurent polynomial Pτ in n− 1 variables via

Pτ =
∑

m′∈Zn−1

aψ(m′)x
m′
.

This formal construction simply gives a polynomial Pτ whose array of coefficients
essentially matches P on τ . Of course, Pτ depends on ψ, but any two such
embeddings will differ only by a translation and a general linear transformation,
so m(Pτ ) is well-defined. In our example above let τ be the top facet of ∆. Thus
for a suitable embedding ψ we would have Pτ = 3t2 − t + 2. Continuing with
the same orientation around ∆ the other polynomials associated with the facets
would be −2t+ 3, 5t− 2, and 2t+ 5.

The relevance of the Pτ is underscored by the following result.

Theorem: (Smyth) Let P have Newton polytope ∆. If τ is any facet of ∆,
then m(P ) ≥ m(Pτ ).

Before giving the proof we explore a few of the consequences of this theorem.
Applying it repeatedly, we eventually reach the zero-dimensional faces η of ∆,
which are the vertices of ∆. The polynomials Pη are constants equal to the
coefficients of P at these vertices. Therefore m(P ) ≥ m(Pη) = log |am| for
any m which is a vertex of ∆. In the one-dimensional case we conclude that
m(P (x)) ≥ max{log |ad|, log |a0|}, where ad and a0 are the leading and final
coefficients. These must both equal ±1 in order to have m(P ) < log 2. More
generally, to find polynomials P ∈ Z[x, y] with small Mahler measure one should
ensure that Pτ = 0 for all faces τ , which is equivalent to asking that all Pτ are
cyclotomic, by Kronecher’s theorem.

Let us return now to the proof that m(P ) ≥ m(Pτ ).

Proof: We first simplify matters by assuming that P (x) ∈ C[x1, . . . , xn] is a
polynomial. Furthermore, suppose that the facet τ is contained in the hyper-
plane mn = d, where m1, . . . , mn are coordinates for Zn. The upshot of these
hypotheses is that if we think of P (x) as a polynomial in xn,

P (x) = Pd(x1, . . . , xn−1)x
d
n + · · ·+ P1(x1, . . . , xn−1)xn + P0(x1, . . . , xn−1),

then we can take Pd(x1, . . . , xn−1) as Pτ . Factoring out Pd we are left with a
monic polynomial in xn whose roots αj(x1, . . . , xn−1) depend continuously on
the first n− 1 variables, so that

log |P (x)| = log |Pd(x1, . . . , xn−1)|+
d∑
j=1

log |(xn − αj(x1, . . . , xn−1))|.

Integrating with respect to xn in the expression for m(P ) and using Jensen’s
formula yields

m(P ) = m(Pd) +
1

(2πi)n−1

∫
Tn−1

d∑
j=1

log+ |αj(x1, . . . , xn−1)|
dx1
x1

· · · dxn−1

xn−1
.

But log+ is non-negative, so we conclude that m(P ) ≥ m(Pd) = m(Pτ ).
To finish the proof, we reduce the general case to the one considered above.

Lemma: Let ∆ be a convex polytope with vertices in Zn and let τ be any facet.
Then there exists an affine transformation (i.e. a translation followed by a linear
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map) such that the image of τ lies in the hyperplane mn = 0 and the image of
∆ lies in the region mn ≤ 0.

Proof: By translating ∆ if necessary, we may assume that the hyperplane
containing τ passes through the origin. This hyperplane has equation m ·u = 0
for some primitive vector u ∈ Zn. (The coordinates of a primitive vector have
no common prime divisor.) According to a theorem of Hermite, there exists
a matrix A ∈ GLn(Z) whose bottom row is the vector u. If m0 is any point
on the hyperplane, then Am0 satisfies mn = 0 by construction. Since A(∆) is
convex, it will lie entirely within the region mn ≤ 0 or mn ≥ 0. In the latter
case, replace u by −u to obtain the desired result.

Therefore given any Laurent polynomial Q with Newton polytope ∆Q, facet
τ , and associated polynomial Qτ , we first apply the lemma to ∆Q, then translate
the resulting polytope so that it lies entirely within the region m1 ≥ 0, . . . ,
mn ≥ 0. The net effect of this sequence of translations and linear maps is to
obtain a new polynomial P with m(Q) = m(P ) as well as m(Qτ ) = m(Pτ ). We
can now use the above argument to deduce that m(Q) ≥ m(Qτ ) for any Laurent
polynomial Q.

The ideas just presented may be used to present an alternate proof of the
convergence of m(Q). We have seen that m(Q) ≥ m(Qη) = log |am| for the
non-zero coefficient am at any vertex η of ∆Q. Thus m(Q) is bounded below.
On the other hand, if we choose A ∈ GLn(Z) so that no face of A(∆Q) (of any
dimension) is parallel to the plane mn = 0 then the polynomial P = A(Q) will
be monic with respect to xn, i.e. Pd(x1, . . . , xn−1) = 1. Therefore

m(Q) = m(P ) =
1

(2πi)n−1

∫
Tn−1

d∑
j=1

log+ |αj(x1, . . . , xn−1)|
dx1
x1

· · · dxn−1

xn−1
,

where as before αj(x1, . . . , xn−1) are the roots of P (x) viewed as a polynomial
in xn. Since the leading coefficient never vanishes and Tn−1 is compact, the
functions αj(x1, . . . , xn−1) are bounded, hence m(Q) is bounded above as well.
(A concrete example may clarify this reasoning. Consider P (x, y) = (x−1)y2−
3xy + (x+ 1). The roots y as a function of x are

α1(x) =
3x+

√
5x2 + 4

2(x− 1)
, α2(x) =

3x−
√
5x2 + 4

2(x− 1)
,

which are not bounded near x = 1. If instead we had P (x, y) = y2−3xy+(x+1)
then αj(x) =

1
2 (3x ±

√
9x2 − 4x− 4), which are bounded for |x| = 1.) Finally,

we mention in passing a third approach, which involves defining µP (t) to be the
normalized Haar measure on Tn of the set {x ∈ Tn| |P (x)| ≤ t}. Then we have
m(P ) =

∫∞
0

log t dµP (t), so the behavior of µP (t) for t small determines the

convergence. It has been shown that µP (t) ∼ Ctδ for positive constants C, δ
depending on P , which effectively counteracts the blowing up of log t as t→ 0.

The subject of Mahler measure achieved new relevance during the 1980’s
with the work of Smyth in which he proved identities such as m(x + y + z) =
L′(χ−3,−1) and m(x+ y+ z+w) = 7

2π2 ζ(3). We will give an elementary proof
of the former to illustrate the techniques involved and provide a contrast to the
more powerful methods which will be developed in subsequent lectures.

Proposition: (Smyth) Let χ−3(n) =
(−3
n

)
be the quadratic Dirichlet charac-

ter with conductor 3 given by χ−3(n) = 0, 1, −1 when n ≡ 0, 1, 2 mod 3,
respectively. Then m(x+ y + z) = L′(χ−3,−1).
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Proof: We first make the simplifying observation that for a given z with |z| = 1,
|x+ y + z| = |xz + y

z + 1| and x
z traces out T1 as x does. Thus

m(x+ y + z) =
1

(2πi)3

∫
T3

log
∣∣∣x
z
+
y

z
+ 1

∣∣∣ dx
x

dy

y

dz

z

=
1

(2πi)2

∫
T2

log |x+ y + 1| dx
x

dy

y
,

which is just m(x+ y + 1). By Jensen’s formula the latter expression equals

1

2πi

∫
T1

log+ | − x− 1| dx
x
.

Letting x = eiθ leads us to evaluate

1

2π

∫ π

−π
log+ |eiθ + 1| dθ = 1

2π

∫ 2π/3

−2π/3

log |eiθ + 1| dθ,

since for θ outside this range, |eiθ+1| < 1 so log+ vanishes there. (The geometry
of the situation comes into play here.) Using symmetry, the fact that |eiθ+1| =
2 cos(θ/2), and the substitution θ/2 7→ θ we obtain

m(x+ y + 1) =
2

3
log 2 +

2

π

∫ π/3

0

log(cos θ) dθ.

By taking derivatives one can verify that∫
log(cos θ) dθ = θ log(cos θ)− θ log(1 + e2iθ) +

i

2
Li2(−e2iθ) +

iθ2

2
.

Since the integral will be real we may ignore the imaginary parts, yielding

m(x+ y + 1) = <
(
i
πLi2(ξ

−1)
)

=

√
3

4π
· 2

(
1

12
+

1

22
− 1

42
− 1

52
+ · · ·

)
=

√
3

4π
· 3

(
1

12
− 1

22
+

1

42
− 1

52
+ · · ·

)
=

3
√
3

4π
L(χ−3, 2).

Here ξ = e2πi/6 and the coefficients of the series repeat mod 6.
Finally, we use the functional equation to relate this value to L′(χ−3,−1).

Recall that we defined

L⋆(χ, s) = |∆F |s/2Γ−(s)L(χ, s)

for odd quadratic Dirichlet characters χ, which satisfies the functional equation
L⋆(χ, s) = L⋆(χ, 1 − s). In our case χ−3 is the Dirichlet character associated
with F = Q(

√
−3), so χ−3(n) =

(−3
n

)
is odd, real-valued, and the discriminant

of F is ∆F = −3. Using Γ−(s) = π−(s+1)/2Γ( s+1
2 ) and solving the functional

equation for L(χ−3, 1− s) we obtain

L(χ−3, 1− s) = 3s−
1
2π

1
2−s

Γ
(
s+1
2

)
Γ
(
1− s

2

)L(χ−3, s)

= 21−s3s−
1
2π−s sin(πs2 )Γ(s)L(χ−3, s).
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Here we employed the duplication formula Γ( s2 )Γ(
s+1
2 ) = 21−sπ−1/2Γ(s) and

the identity sin(πz) = π/(Γ(z)Γ(1 − z)). Substituting s = 2, we find that
L(χ−3,−1) = 0, but taking the derivative of both sides with respect to s and
then evaluating at s = 2 yields

−L′(χ−3,−1) = 2−13
3
2π−2 d

ds

(
sin

(πs
2

))∣∣∣∣
s=2

Γ(2)L(χ−3, 2),

or L′(χ−3,−1) = 3
√
3

4π L(χ−3, 2), which brings us at long last to the conclusion
that m(x+ y + 1) = L′(χ−3,−1).

In general the exact value of m(P ) for P = x1+ · · ·+xn is unknown. Deter-
mining numerical values to high precision is difficult because of the vanishing
of P on the n-torus. The measure µP (t) is closely related to Pearson’s ran-
dom walk, a phenomenon which appears in a wide variety of scientific papers.
The question Pearson asks is, beginning at the origin of the complex plane and
taking n steps of magnitude 1 in random directions, what is the probability of
ending up within a distance t of the origin? Ironically, it is easier to compute
m(P ) for larger values of n (say n = 100 as opposed to n = 10), due to an
asymptotic estimate of the form

m(x1 + · · ·+ xn) ∼
log n

2
− γ −

∞∑
j=1

cj
nj
.

The series does not actually converge, but the partial sums seem to approach
a limit before blowing up; this apparent limit is a good approximation of the
Mahler measure.

We conclude this section with a brief discussion of some of the analysis
related to Mahler measure. To begin, m(P ) is continuous as a function of its
coefficients. Secondly, Boyd has shown that for Laurent polynomials P in two
variables,

lim
n→∞

m(P (x, xn)) = m(P ).

In particular, if m(P (x, y)) is small then we obtain a sequence of polynomials
P (x, xn) in one variable with small Mahler measure. (This may have been
the original motivation for the computation of m(x + y + 1).) To highlight
the amount of care needed to prove such a statement we point out that for
φ : T2 → C continuous it is true that

lim
n→∞

1

2πi

∫
T1

φ(x, xn)
dx

x
=

1

(2πi)2

∫
T2

φ(x, y)
dx

x

dy

y
.

Intuitively, the map x 7→ (x, xn) from T1 to T2 fills out the 2-torus more and
more completely as n → ∞. However, log |P | is usually not continuous. The
key step in Boyd’s argument is to show that∫

|P |<ϵ
log |P (x, xn)| dx

x
−→ 0 as ε→ 0

using a finer estimate of µP (t) for t small than was quoted before.
To illustrate the dependence of his result on the fact that P is a Laurent

polynomial, Boyd provides the following (contrived) counterexample. Define
G : T1 → T1 as follows. Let x = eiθ ∈ T1, and set

G(x) = x2
k

, 1− 2

2k
≤ θ < 1− 1

2k
, k = 1, 2, . . .
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By construction, G(x) wraps around T1 once for each subinterval. Then define
F : T2 → C by F (x, y) = G(x) − y. (Note that F is not a polynomial, and is
discontinuous at (1, y).) We claim that

lim
n→∞

1

2πi

∫
T1

log |F (x, xn)| dx
x

6= 1

(2πi)2

∫
T2

log |F (x, y)| dx
x

dy

y
.

Taking n = 2k we see that F (x, xn) is identically equal to zero on the subinterval
1− 2

n ≤ θ < 1− 1
n , so the integral diverges to −∞ there. (It is left as an exercise

to verify that the integral equals zero on the other intervals.) Hence the limit
on the left-hand side does not exist. On the other hand, the right-hand side
equals

1

(2π)2

∫ 2π

0

∫ 2π

0

log |G(eiθ)− eiϕ| dθdφ =
1

2π

∫ 2π

0

log+ |G(eiθ)| dθ = 0,

which is the counterexample.
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