Topics in K-theory and L-functions

May 9, 2002

1 Relation with Basic Toric Varieties

1.1 Introduction

Consider P(z,y) € Clz,y,z~",y7']. We construct its Newton polytope A.
Take, for example, P(z,y) = 1+ z + 2% + 23y — 2%y + 2y + y? + 17xy. See
Figure 1.

Take Y to be the zero locus of P(z,y) in C* x C*. We will complete Y.
Rather than completing it using the projective space, we will complete it to
an X in a surface X, which will carry divisors, one for each face, which will
intersect in the same way as the faces. (Usually we add one line to C x C to
get P?(C), instead, we will add six lines to C* x C*).

Fact: genus(X) < #{interior points of A} and it is equal generically.
Then the Newton polytope of a generic degree 3 polynomial has one interior
point. For a generic polynomial in two variables of degree d, it is a rectangular
triangle which has sides of length d. It will have W points, as we could
expect for the genus of a generic polynomial of degree d. See Figure 2.

The case of hyperelliptic curves gives another example where we know
how to compute genus. An hyperelliptic curve has an equation of the form
y> = f(r) with deg f = d. The Newton polytope will have [%] interior
points and this number is equal to the genus. See Figure 2 again.

So we have Y C C* x C*, and z,y are rational functions on this curve.

Theorem 1 (z,y)y € pis for all w € Y <= the roots of P, are zero or
elements in fiso.
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Figure 1: Newton polytope for P(z,y) = 1 + x + 2? + 23y — 2%y + zy> +
y? 4+ 17zy.
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Figure 2: The genus is in general equal to the number of interior points.
First case for a polynomial of degree d in two variables. Second case for a
degree d hyperelliptic curve.



Ultimately, we will want to consider {z,y} € Ky(C(Y)). We will be
looking for pairs {1, @2}, which are in the kernel of all the Tame symbols,
this is analogous to the case of Ky(Op).

1.2 Basic Toric Varieties

A good reference for what follows can be found in [F].

Definition 2 A toric variety is a normal variety X containing a torus T,
T = (C*)™, as a dense Zariski open subset, together with an action T x X —
X, of T on X, that extends the natural action of T on itself.

Essentially, one completes T by adding various objects at oo in a coherent
way.
Following, we will show a way of constructing toric varieties. Let N be a
lattice, i.e. N =2 Z", and let M = Hom(N,Z) = Z™. We have the pairing:
(): M xN-—Z: (u,v) — uv)

Definition 3 A strongly convex rational polyhedral cone, or more simply, a
cone, 0o C Nk = N ® R, is a convex polyhedral cone, i.e. a set of the form

{rivy +...+rsvs € Ng|r; >0}

with vertex at the origin, spanned by a finite number of vectors in the lattice
and such that it contains no line through the origin. See Figure 3.

The dual cone ¢ C Mg is defined as
6 ={ué€ Mg|(u,v) >0¥v € 0o}

Given ¢, ¢ is spanned by the primitive inward pointing normals to facets
(faces of codimension 1) with coordinates in Z. See Figure 3.
Then S, = N M is a semigroup.

Lemma 4 (Gordon) S, is finitely generated.
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Figure 3: Cone 0 C N and dual cone ¢ C M.

Proof. Take uq,...us; € ¢ N M generating & as a cone. Consider K =
D tiu; |0 < t; < 1}, K is compact and M is discrete, hence K N M is
finite. Claim: K N M generates the semigroup. Indeed, if u € 6 N M,
then v = > rju;, r; > 0. Write r; = m; +t;, m;j € Z>g, t; € [0,1]. Then
u =Y myu; +u, with uy € KN M. Also v’ € K. Since u € M and
> myu; € M, then v’ € M, hence v’ € K N M, and K N M generates the
semigroup. [J

We will build an S,-algebra

A, =C[S,| = { Z amxm}

mESo'

where m € S, corresponds to ™ € A,. (Here we are using the multi index
notation).

For example if o is spanned by (1,0),(0,1), then & is also spanned by
(1,0),(0,1) and A, = Clzy, z5] naturally.

Finally, we will associate to o the affine toric variety

U, = Spec(A,)

Note that we could have vectors in ¢ which are not integral linear com-
bination of the generators, (this will imply that U, is singular). Take for
instance, o spanned by (0,1),(2,—1). Then & is spanned by (1,0), (1,2).
Note that (1,1) is in the interior of o but is not an integral linear combina-
tion of (0,1) and (2,—1). See Figure 4.



Figure 4: The point (1,1) belongs to ¢ but is not an integral linear combi-
nation of (0,1) and (2, —1).

Definition 5 o is smooth if it is generated by part of a Z-basis for N. Think

of
U:{)\1U1+---+)\nvn|)‘i€R20}

Then o is smooth if we can add some elements to {v;} in such a way that we
get a basis for N.

Definition 6 o is simplicial if the v; are part of a basis for Ng.
Proposition 7 U, is smooth iff 0 is smooth. U, is orbifold iff o is simplicial.
Note that in R? smooth and simplicial coincide.
Continuing with our second example, we get
A, = Clz, vy, 7y*] = Clu, v, w]/(v* — uw)

A, is then the coordinate ring for a cone, which certainly has a singularity.

Toric varieties in general are obtained by gluing affine toric varieties. For
example, we can obtain P! by gluing two copies of C having C* in common
(Figure 5).

Definition 8 A fan X is a collection of cones 0 € Ny such that

° 01,02622>0'1ﬂ0'262,



Figure 5: P! is homeomorphic to a sphere which is the union of two copies
of C (homeomorphic to a sphere minus a point). The two copies of C have
C* in common which is homeomorphic to a sphere minus two points. The
fan for P! is composed by the cones R<g, {0} and Rso.

e 7<0 (aface)jc e =TED

The fan ¥ gives rise to Xy, a toric variety. Basically, given oy, 09 € X, let
T = 01 N oy and glue U,, along U,, by identifying the images of U, — U,,
and of U, — U,,.

In order to get P' we take ¥ a 1-dimensional fan which is union of Rxg,
R<o, and {0}. See Figure 5. The algebras are: C[z], Clz '], and Clz,z ]
respectively. The affine varieties are: C, C, and C* with a patching isomor-
phism given by x — 2! on the overlap.

Let A be a polytope in a lattice Mg. Say, for instance, that A is the
triangle with vertices (0,0), (3,0) and (0, 3) (Figure 6). Then T = (C*)?; we
will add three divisors and get P2.

We get XA by making the fan 5. We take n, the primitive inward
normal vector to each 7 < A facet. So a face n < A yields 0, = cone
spanned by n,, n < 7. This is a complete fan that gives rise to X which
is always projective. (Not all the fans are of the form Y5 and not all these
varieties are projective).
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Figure 6: Starting from a polytope C Mr we get a fan in /N and the fan of
dual cones in M.

In our example, ¥A is composed by seven cones: three 2-dimensional,
three 1-dimensional and 0. Now we look at the duals of the o;. See Figure
6. We get the following diagram (the arrows are inclusions):

C* xC
X x_l,y
C? C?
e haly T,y
6’1,T1:1 6’0,T0:1
C* x C*
/l,yu\
C* xC C* xC

—1 =1y, 1,1 1
ry 5T Y, r Y

N/

zy ty !
6’2,T2 - 1

Y,y

All of them glue together to give P? with homogeneous coordinates [T} : T :
1]
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Another way of constructing X, is: set

Ap = &y Clz™t"]

meMnnA, n=0,1,...

This is a graded ring where deg(x™¢") = n. Then take Xn = Proj(Aa), the
standard construction from algebraic geometry.

Back to the first method, what happens with A = square of vertices
(£1,+1)? This will yield P! x P'. We get the diagram:

C? C* x C C?
zhy z,xty T,y

I A

C* xC C* x C C* xC
> s

1

iy, y v, x iy, y Y,y
2 C* x C 2
PR G
eyt z,xt y™! z, Yy~

If we start with A = triangle of vertices (0,0), (2,1), and (1,2), we get
a singular variety which we will have to desingularize. To do that, one can
refine the fan, so that the cones are smooth, by adding vectors. See Figure
7.

Now, given a Laurent polynomial
PeClz,y,z "y

we get B
P~ A s XA~ Xa



Figure 7: One can desingularize the resulting variety by refining the fan.

(the last term is the desingularized variety). Consider the curve Y : P(x,y) =
0,Y C (C*)?, completed to Y in XA D (C*)2 Each side in the polytope
corresponds to a divisor:

T<A<+— D;on Xp

which is itself a copy of P!, a 1-dimensional toric variety.

We will view z,y as rational functions on Xa. Now each D, gives a
valuation on the function field of the toric variety, which is ord,_, and can
be read off the polytope. In fact

ordp_(z™) = (v, m)

where v is the primitive normal determining the facet 7. Here, (Figure 8),
ordp, (z'y®) = ((0,1),(1,0)) = 0. The idea is that 7 corresponds to y = 0
and the order of vanishing of = should be 0.

Take another example: P(z,y) = 2%y + a2y®> + 22 + v +y + k. The set
{P(xz,y) = 0} is generally an elliptic curve. The Newton polytope has five
faces. Each face has a linear polynomial associated to it, so it corresponds
to exactly one point, then each D; corresponds to a point in the variety. See
Figure 8. We have the following:

v (normal) | (v, (1,0)) (v, (0,1))
Dl (10 ) 0
Dy | (=1,-1) 1 1
Dy | (1,-1) | 1
Dl (1) 1 |
Ds | (0,1) 0 1
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Figure 8: Reading divisors from the Newton polytope.

Then ($):—D1—D2+D3+D4 (y):—DQ—D3+D4+D5
A is an intersection of half spaces, so it is given by data
A ={m e Mg|(m,n;) > —a,} a, €L

Each 7 < A corresponds to a 1-dimensional cone in XA generated by n,
which corresponds to a divisor D, C XA. We have

Xa\T=|J D
T<A
(the divisors make up the rest of the variety outside the torus T). Define
Da=)> a,D,
T<A

a, and Da depend on the location of the origin. However, changing the
origin will replace D with an equivalent divisor. Then

H°(Xa,Ox,(Da)) = @ Ca™
meA

(as vectorial spaces). The monomials z™, with m € M, yield rational func-
tions on Xa:
2" T — C*

10
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Figure 9: Choose the counterclockwise orientation in the Newton polytope.

In the example of P2, the sections are just homogeneous polynomials of
degree 3. (Placing the origin in the interior point). We have

ordp_(z™) = (m,n,)

For the n = 2 case, there is only one direction which is orthogonal to n,, so
the only nonvanishing ™ are in the direction of 7.

We will stay in the plane from now on. Let A be as before. Choose
counterclockwise orientation on A. See Figure 9. There is a unique monomial
t, such that all monomials not vanishing on D, are of the form t’ﬁ for k € Z.
So t, : D,—sP".

Now take P a Laurent polynomial in z, y, with polytope A. So P is a
section of this line bundle. We will let Z = Z(P) C Xa be the zero locus of
P. We have essentially just studied plane curves, but on a toric variety, this
is not the usual projective space. Here is the scenario:

{P=0} Cc C*xC~
\’ \’
7z C Xa

How does Z intersect the divisors? We claim:
D,NZ - {P, =0} c C* C P!
Recall that P; is the polynomial in one variable corresponding to the face 7.

Let’s revisit Tame Symbols. C' will be used to denote a smooth projective
curve over C. Now if w is a point of C, it gives a valuation of C(C'). The
tame symbol is

e C*

(@9} = (1)

11



The term zzgz; is a monomial in z,y and it is # 0, 00 by construction. Here
x,y are rational functions on Z C XA. We will assume that P is irreducible,
and denote A = A(P) its Newton polygon as usual.

Note that (z,y), = 1 when w ¢ divisors of z,y, so the only relevant
points w’ € C' are those above points w € D, N Z.(If w is singular, we are

considering w' above it). Recall that

t;: D,——P' takes D,NZ — {P. =0} C C*

Claim: (z,y), = £ value of a monomial at w € D, N Z, hence it must be a
power of t,, say t*. Thus (x,y), = +t*(w). But t,(w) is a root of P,, which
is what we wanted.

Finally we prove the

Theorem 9 (,y)y € poo for all w' <= the roots of P, are in ji, U {0}
for all .

Proof. If £ # 0 the assertion is clear. We have to argue that k£ # 0. If

k =0, then (z,y), would be constant. It is also = i%. Ifwe D, NZ,

then (w(y), —w(x)) # 0, so this quotient is not constant and it restricts to a
non constant monomial on D, and we could not possibly have k£ = 0. [
For our purposes we will define

K(C)®Q = ﬂ{ker(tame symbol at w)} @ Q
Corollary 10 {z,y} € K5(C) ® Q <= roots of P, are in fi, U {0}.

1.3 An example with a family of elliptic curves

We will work with a family of elliptic curves with a 5-torsion point. Consider
the following family of polynomials

Pi(7,y) = (x+y+1)(z+1) (y+1)—kay = 2*y+ay’+2’+y°+(3—k)zy+20+2y+1

We see that it has one interior point, which is coherent with the fact
that it has genus 1. Note that the P, are either (£ + 1) or (¢ + 1)?. Taking
k € Q # 0 gives a family of elliptic curves Ej and {z,y} € Ky (Ey) @ Q.

12
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Figure 10: For this family of elliptic curves we can see clearly the correspon-
dence between the sides of the Newton polytope and the divisors of x and

y.

The curve Fj is isogenous to

r = —u’4ku—kv - _1— kv
Fy, v+ (1—k)uv—kv = v’ —ku? via SUw=k) u(u—k)
Y= u—k

We claim that @@ = (0,0) is a point of order 5 on Fj. We have 2Q) =
(k, k%), 3Q = (k,0), 4Q = (0,k), 5Q = O. We would like to compute the
divisors of x,y. Let’s find the divisors of u, v, u — k first.

v v u—k —u’+ku—kv
-2 -3 -2 -4
Q=00 |1 2 0 1
20=(kk)| 0 0 1 0
30=(k0) |0 1 1 3
4Q=(0,k) | 1 0 0 0

We can then compute the divisors:

(2) = —(2Q) +2(3Q) - (4Q)
(y) =-0+2(Q) - (2Q)

It turns out that this can be read off A. To do that, one checks the motion
in the direction = as one transverses the perimeter counterclockwise. We get:
2,0,—1,—1,0, this shows (y). One does the same with the y direction and
gets 0,—1,—1,0,2, which corresponds to (z).

13



The {n@} occur where Z(P) intersects U,.aD, (one per face in this
instance). See Figure 10.
We claim (z,y)y € oo (= {z,y} € Ko(E)) @ Q). Let’s compute

0.2 T° 2
(T,9)g = (=1)"" —| =2(Q)
L
since ordg(x) = 0 and ordg(y) = 2. Recall that Q = (0, 0) in u, v coordinates.

We have
kv

u(u — k)

Since ordg(u) =1, ordg(v) = 2 and ordg(u — k) = 0, then the second term
is zero when evaluated at Q). So z(Q) = —1 and then

r=-1-—

(#,y)q =1

Analogously, we get: (z,v)20 = (,¥)30 = 1, (7,9)10 = (z,y)o = —1.

2 Regulator map on curves

For the content of this section, we refer to [RV].
Let C' be a smooth projective curve over C. We will construct a function

reg : I,(C)® Q — H'(C,R)

whose image will be a differential form.
Let z,y € C(C)*. Define

n(x,y) = log|z|dargy — log |y|darg x

x (dz

Where dargz := S (7) is well defined in spite of the fact that arg cannot
be continuously defined in C\ {0}.
Let S = {zeros and poles of zory} C C(C) where 7 is not defined.

Proposition 11 7 is a closed differential form on C'\ S.

Proof. We have,

d d
—x:dlog|x|+idarga§ —y:dlog|y|+idargy
z Y

14



d d
R (_y A _x) = dlog |z|dargy — dlog |y|dargx = dn(z, y)
y o x

Now look at the dimension of the cohomology group to conclude that
dy d
3 (Ua) 0
Yy x

Remark 12 7(z,y) is a cup product of log|z| and log|y| in the Deligne
cohomology.

O

Some properties of n are:

o n(z1w2,y) = n(w1,y) + n(z2,9)
e n(y,x) = —n(z,y)

e n(r,1—2)=0"in HY

Later on we will make the last statement more precise.
Now, since n(x,y) is closed, it can be regarded as an element of H'(C'\
S,R). Here we think of H'(C'\ S,R) as the dual of H,;(C \ S,Z). More

precisely, n(x,y) corresponds to

V] — An(x,y)

So far, [y] € H;(C'\ S,Z). The picture we have in mind is to extend 7 to
a map on Hy(C,Z). In order to get that, we need that the integral over an
element of Hy(C,Z) does not depend on the path that represents it. What

we need is that
}{ n(z,y) =0

around any point w € S.

Lemma 13 )

o U(Iay) :log|(x,y)w|

15



Corollary 14 n will extend to all of C iff |(x,y)w| = 1. In particular, this
is so if {z,y} € K3(C) ®@ Q.

Proof of Lemma. Since both sides are bimultiplicative and skew-symmetric,
we are reduced to the cases (w(z),w(y)) = (0,0),(0,1), (1,1).

The first case is trivial. Consider the second. It is clear that |(z,y),| =
|z(w)|. Now this is a local question and we can take local coordinates. Let
(U, ¢) be a coordinate system with 0 € U, ¢ : U — C(C), ¢(0) = w. Write
f =z o¢. Observe that f(0) # 0 since x(w) # 0. Assume that the pullback
of y is the parameter ¢ (i.e. ¢(t) = y). Then what we have to prove is

1 a1
log |(0) = 5= # ogl71 — 5= f log ldare f

If we take the integration loop close enough to zero, arg f is a well defined
function and the second integral must be zero. Then we get the equality with
the first integral by direct application of Jensen’s formula. The third case is
similar. [J

As we mentioned in the Corollary, if |(z,y),| = 1 Yw € S then we have a
well defined function from

H(C2Z)—R W [y
g
For illustration only. Let’s call

Ky s(C)®Q= ﬂ {ker(tame symbol at w)} @ Q
wegS

Then 7 can be defined over K, s(C') ® Q. We have the following commu-
tative diagram:

K»5(C) ® Q —— H'(C\ S,R)
(, w Res,,
1 .
(CX Og | | (C

In order to define the 1 over K, ¢(C') ® Q properly we still need to prove:

16



Proposition 15 n(z,1 —x) = 0 in H'(C,R). (This is a differential form
on the whole curve, since all the tame symbols are =1 on (z,1 —x)).

Proof. If C = P!, then n = 0 at once, since P! is simply connected and
n is closed. In the general case, v : C' — P!, then it is easy to see that
n(z,1 —x) = z*n(t,1 — t) where ¢ is a parameter in P', and from this, the
statement follows. [

As Tate has pointed out, n(x,1 — x) = 0 means that 7 must be the
differential of some function on C. This function turns out to be the Bloch
— Wigner dilogarithm:

Definition 16 The Bloch — Wigner dilogarithm is defined by:
D(t) := ¥(Lip(t)) + log | t| arg(l — t) where arg(l —t) € (—m,m)
Proposition 17 If C = P' with parameter t, then
n(t,1 —t) =dD(t)
Proof. Recall that

o0

Lo =S 5 (for [t <1) = _/0 log(1 — u)i—“

~
n=1
We choose the branch of log(1—u) defined on C\[1, c0) for which log(1—0) =
0. Then — [; log(1 — u)% extends Lis(t) to this domain,

We have seen that f:n(u,l —u) is independent of the path in P!\

{0,1,00}. Define

t

f(t) =lm [ n(u,1—u)

e—0 ¢

Then f(t) = [} log [uldarg(l —u) — [i log|1 — u|dargu by definition.
Now for u € C\ [1,00) we have:

log(1 —u) =log |1 —u| +iarg(l — u)

d
U dlog|u| + id arg u
u

We get

t

t
S(Lig(t)) = —/ dlog |u| arg(1 — u) —/ log |1 — u|dargu
0 0

17
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Figure 11: Integration path.

Now choose the integration path as follows: start from zero and go straight
to —|t|, then go from —|¢| to ¢ with constant radio and without crossing the
real line (Figure 11). In the first leg, argu is constant, then dargu = 0, also
arg(l —u) = 0. In the second leg, |u| is constant and dlog|u| vanishes. Then
the first integral vanishes and we get

t t
(1) :/0 log|u|darg(1—u)—/0 log |1—uld arg u = arg(1—t) log | £|+3(Lis()) = D(#)

:>/0t77(u,1—u) = D(t)

But the integral of n should be path independent on all of C, so we conclude
that the jump over the branch cut of Lis(#) must be balanced by the jump
of arg(1 —¢). Then we get that D(t) is analytic on C\ {0, 1} and continuous
on 0, 1.

The general case n(x,1 —x) = dD(x) is solved via the diagram

C - P!

18
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Figure 12: Distribution of values of D(z).

3 Properties of the Bloch — Wigner diloga-
rithm
We will investigate D(z). It has the following properties:

D(e") = 3(Lig(e?)) = S (Z en’; ) _ Z singe)

n=1

Then D =0in R _
Also, D assumes its maximum at e’ . Tt can be viewed as a function
P!(C) — R. Figure 12 sketches how the values of D(z) are distributed.

3.1 Maillot’s example

Consider this example due by Maillot:

Example 18 Let ajxy + aswy + azxs € Clay, x9, x3]. Then

a1
a3

D

mlogmax{|ai|, |azl, |as|} not A

(1%
rm(ay 1+ apta-Hasss) = { ‘ e ) + g loglar| + aglog |as| + azlog |as] A

Here the A stands for the fact of whether |a],|as| and |as| are the sides of
a triangle. In other words, whether we have the inequalities:

19



Figure 13: Triangle figure for Maillot’s example.

a1 + |az| > |as| as| + |as| > |ai| las| + |ai| > |as|

The «; is the angle in the triangle which is opposite to the side of measure

la;|. See Figure 13.

Proof. First, let’s observe that we can assume a; € R., because we can

change each variable by multiplying it by a complex number of absolute value

one and this will not change the Mahler measure of the polynomial.
Consider the second case, assume that we have as > a; + ay. We apply

Jensen’s formula and obtain:

—Q1 T — AT
m(a1xy + axxs + azxrs) = m <a3 (fL'g — (%)))
3

1 dl‘l d!L’Q
=1 —— [ log"
ogas + (2m’)2 /T2 og

Since az > a; + ag, then az > |ayjx + agxy| as long as x1,z9 € T. Then

Ty T
a121+02%2
a3

Now for the first case, we will write our polynomial in the form

a1 + 29

as

‘ < 1 and so the integral vanishes and we have proved this case.

P(z,y) =y + az — b, a,b € Ry

for simplicity of notation. By applying Jensen’s formula,

1

m(P) = — log® |b— ax|— = —/ log™® |y|darg >
27'('2 |z]=1

:—/10g|y|dargx——/ z,y)

20
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Figure 14: Integration path. Triangle of sides a, b and 1.

Because of the formula n(z,y) = log|z|dargy — log|y|dargz and the fact
that || = 1. Here 7 is the path where |b — az| > 1, which is part of a circle
of center b and radius a. See Figure 14.

It will be convenient to work in A*(C(P')*)y where the subindex 0 stands
for the tensorial product over Q.

We claim that:

x/\y:%/\(l—%)ng/\(l—%)wLx/\b (1)
Proof.
%/\(1 — %) = %/\(1 — %)—m/\(l — %) = —g/\(l — %)—l—x/\(b— azx)—zAb

We conclude the result from the fact that b — ax = y. U
Applying 1 to the equation (1):

n(x,y) =dD (%) +loggdarg (1 - %) —logbdargx

Now we integrate. The first term can be integrated using Stokes Theorem.
Let « be the angle opposite to the side of length a, 5 opposite to the side of
length b and 7 to the side of length 1 (Figure 14).

The darg (1 — %) term goes _between arg (1 — %) fmd arg (1 — ﬂbo),
where w = b — arg. So, 3 =1 — %® and hence arg (1 — %) =argw = —a.
Also arg (1 — “—‘l’jo) = argw = «. The total difference of arguments is 2a.

The d argx term goes between arg T, and argxy. By the use of geometry,
it is possible to compute argxy = —v. Then, arg Ty = v, and the difference

of arguments is 27 — 2.
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Iall

0 la, | 1

Figure 15: A triangle is described, up to similarity, by a parameter in .

Putting all of this together:

_p (%) _ p (% LEp Y
—2mm(P) =D ( ; ) D ( 5 ) + 2alog , 2(m — ) logb
Then use the fact that D(z) = —D(z2).

T b
m(P) = D (%) — aloga + (m — ) logb

Using the fact that a + 8+ v = 7
m(P) = D (% e”) + aloga+ Slogh

And we are done. [J
Observe that the formula should be symmetric. In fact, we can describe
the triangle (up to similarity) by using only one parameter: any triangle is
similar to one that has vertices equal to 0,1, z where z € H. See Figure 15.
Interchanging sides and angles, the first term should not change. This
translates into the equality of this six numbers:

() n (1) --p(2) -0 ()

(Using D(z) = —D(Zz)). The number we have got corresponds to an invariant
of the triangle. We associate a number to each vertex by doing the quotient
of the two sides that converge to the vertex, always in counterclockwise order.
We get: z, le and 2—21, see Figure 15. Now, if we apply the dilogarithm to
each of those numbers, we always get the same value, this is the invariant
for the class of similarity of the triangle.

In this frame of work, we get the following result:
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Corollary 19
D(z) +log |z] arg(1l — 2) + log |1 — z| arg(z) > m max{log|z|,log|1 — z|}

Proof. It is enough to apply the fact that the Mahler measure of the New-
ton Polygon is greater or equal to the Mahler measure of the sides to the
polynomial 1 + zz + (1 — 2)y € Clz,y]. O

The simplest particular case of this result by Maillot was proved by
Smyth:

m(z +y+2) =D (eT> —1.01494. ..
In fact,

27rn

w\s

> sin >
n(P) = D) = 3 THEL 3500
n=1 =
Where ¢ is a character modulo six with the following values: 0,1,1,0, —1, —1.
If x is the primitive character modulo three, then § + y is a character modulo

six with the values: 0,2,0,0,0, —2. This can be expressed in this way:

I

3.2 Five term relation

Let {2;};50 € CU {oo} be a sequence defined by
{ 20 =a, 21 =0b
Rj+1%j—1 = 1— Zj
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Where (a,b) € (CU{o0})? # (0,1),(1,0). It is easy to see that this sequence
repeats itself cyclically modulo 5 reaching the values: a, b, 174;, %”b’l, I’T‘l in
this order.

Incidentally, observe that the first five equations define a surface in P°
that is called Del Pezzo surface (and it was first studied by Elkies):

1— 21 = 29%p
1-— Z9 = 2321
S = 1— Z3 = Z4%9
1—24 = 2923
1—20 = 2124

It is easy to prove that:

4
ZZj/\(l—Zj):O
7=0

by developing z; A (1 — 2;) = 2; A 2j41 + 2 A zj_1.

On S, we get
4 4 1
Zn(zj, l1—2z)=0 = d (Z D(zj)> =0 = ZD(zj) = constant
=0 =0 j=0
In order to compute the constant, take, for instance: a = ¢,b = —i, then the

other three values are: 1 —1,—1,141¢. We ge

D(i)+D(—i)+D(1—i)+D(—-1)+D(1+i) = D(:)—D(i)+D(1—i)—D(1—i) = 0

Then the constant is zero and we get the five term relation:

> D(z)=0

7=0
O
Observe that this method, which will be used again in the future, is also

good to prove the equalities of the six symmetrical terms of D. Take, for
instance, D (=) = D(z):

11g/\<1—1iz):—(1—z)/\1_z (=) A(=2) =2 A(1—2)



(here we are strongly using the fact that we are tensorizing with Q, so there
is no torsion on the wedge product). We can see the equality taking, for
instance, z = 2.

4 Relation with Hyperbolic Geometry

Some of the proofs of this part can be found in [M].

We will be working on H?, the hyperbolic 3-space. It can be represented
as Cx RsoU{oo} with a special metric that has constant curvature —1. The
metric is given by

4 — da? + dy?* + dz?

with volume element

This is analogous to H?, the upper half plane with the hyperbolic metric.
While the group of isometries of H? is PSL,(R), the group of isometries
(preserving orientation) of H? is PSLy(C). Keep in mind that the restriction
of this action on CU {oo} is as usually:

a b Z_az—i—b
c d ez +d

4.1 Dilogarithm and Volume of Ideal Tetrahedra

We will be considering the ideal tetrahedron (vy,ve,v3,00). See Figure 16.
Ideal stands for the fact that its vertices belong to C U co and one of them
is actually oo. By the action of PSLy(C) we can send (vy,vq,v3,00) to
(0,1, 00, z) and this will not change the volume of the tetrahedron. Hence, if
we want to consider the volume of those kinds of tetrahedra, it will depend
only on the parameter z. Actually, depending on the election of the action,
we could end up with any of z, i, Z—;l, we will see that they are equivalent
in some sense to us. Let’s denote this tetrahedron A,.

Theorem 20

Vol(A,) = D(2)
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W Ve

Figure 16: The hyperbolic space and an ideal tetrahedron.

The sign on the volume stands for orientation. This Theorem gives an
interpretation to Maillot’s formula: the dilogarithm term is the volume of a
hyperbolic tetrahedron such that if we cut the tetrahedron by a plane which
is parallel to the plane C, we get an Euclidean triangle whose sides are |a],
las| and |az|. (Figure 17).

We will need the following:

Lemma 21
Vol(A,) = £(a) + £(8) + £(7)

Where the o, B and vy are the angles of the Euclidean triangle whose sides
are |a1|, |as| and |ag| that we mentioned above. (Observe that this triangle is
invariant by similarities). And

2@%2—/I%Bmﬂﬁ
0

1s the Lobachevski function.

Proof of Lemma. Suppose that the triangle has all the angles acute (the
other case is similar). We can normalize the tetrahedron such that the tri-
angle with vertices in C is inscribed in a circle of radio 1. Consider the
circumcenter, and consider the radios from the center to the vertices and the
perpendicular lines from the center to the sides. We get the triangle divided

A
in six small triangles. Consider the triangle OCA’. See Figure 18.
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V3

Figure 17: The triangle determined by cutting the tetrahedron with a plane
parallel to C is invariant up to similarity.

Figure 18: We integrate over the shadowy domain.
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Then, the volume of this part of the tetrahedron is

cos T tan cos T tan a 1 d d
I A . A At
lmz,yzz 21—x2—y

/cosa /mtana 1 < 1 N 1 ) dudy —
0 0 4/1—22 \V1—22—y V1—-a22+y =
Cos d
/ (log(\/l — 22+ ztana) — log(V1 — 22 — xtan a)) ’
0

N
/Cosalog<MCosa+xsina> de
0 V1—1x2cosa—xsina/) 41 — 22
Substituting = = cosf, then /1 — 22 = sinf, dov = —/1 — z2d.

i/fm(%) d9:3(2(2a)—£(g+a) —2(0)+£(——a)) -

= i <£(2a) - 282 (z + a))

We claim that this expression is equal to ( ) Indeed, starting from the well
known identity

sin2a = 2 sin cosa = 2 sin «v sin (g —a) = 2 sin & sin (g+a>

Multiplying by 2, applying log| - | and integrating we get the equality we
need:

L£2a)=2L(a)+2L (g + a)

Summing over the six triangles, we prove the Lemma. []
Proof of Theorem. There are two ways of proving this Theorem. One uses
the Lemma:

—/ log|25int|dt:—/ log | 2(1—c0s2t)|dt:—/ log |1 — e**|dt
0 0

0
1 20 ) 1 )
= —5/0 log |1 —e*|ds = §D(62“’)
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We will need:

W =

2D@):D(E>+D<1_

z

“) e (=)

Proof of this identity. We will use a similar idea as the one we used in
order to prove the Five-term relation. We claim that

z z zZ(1—z) zZ(1 - 2) 1-2 1-z2
2n(z,1—2) = (ﬂ1——) - LA
n(z1=2) =1 z z —H7<z(1—z) 2(1—2) i 1—2z 1-2z
We will prove, as before, the identity in A*(C(P')*)y. The argument in the
second term is equal to

W=

z zZ—2z Z(1-2) z2—Z 1-2 z—2z 2z z

—N——+ — A — + A =—-AN(Z—-—2)—=-Az+

z z 20-2) 2(1-2) 1—2 1—2z Z Z

3 1- z 1- 1-z 1z
+§A(z—z)+T2A(z—z)—zAza—z)— - ;Az(1—z)+1 - i/\(i—z)—l - z/\(l—z) -

z/\f 2/\ 2/\(1 2) l—z/\ l_ZA(l 2) 1—2/\(1 )
——ANZ—=Az—~- —-zZ)— z— —-zZ)— —z) =

z z z -z 1-2 1—=2

—ZN(1=2)+2zA(1=2)—(1—=2)Az4+(1-2)Az = —ZA(1-2)4+2A(1—2) = 2 2A(1—2)

Applying n, we prove the claim. Then, since n is dD, we get the identity
up to a constant. Then, it suffices to see what happens for a specific value.

Take z = i. Then Z = —1 2o2) — 12 — . We get 2D(i) = D(—1) +

’ z(1-2) 1—2z
D(i) + D(i) and the identity is proved. [J

Then £(a)+£(8)+£(y) = 3(D(e**)+D(e*#)+D(e*7)) and the Theorem
follows from the identity. [

Observe that (0, 1, 00, 2), (0, 1, 00, i) , (0, 1, 00, Z—;l) are isometric tetra-
hedra and then they have the same volume. This is consistent with our iden-
tities of dilogarithm and with the invariant we have defined for the Euclidean
triangles.

Another way of proving this Theorem, due by Bloch, is to observe that
both sides lie in certain cohomology group which is one dimensional over
R and then we only need to check that the constant is one on a particular
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case. The particular case could be, for instance, the regular tetrahedron
(z = HT‘/T?’) This was computed by Coxeter.

Where are we heading? We want to investigate the equality: f7 n(x,y) =
2rm(P). In order to compute the integral easily, we will concentrate in the
case where 7 is exact. When can we guarantee that? If we have

N
=Y rzuAl-z), ;eQ z e CC) n A(CC))eQ (2
j=1

then

n(x,y) =d (erD o zj>

The advantage in this case is that we can use Stokes Theorem to compute
the integral. If we pass to K»(C(C)) ® Q, then the equation (2) implies

{z,y} =0.

Our idea is to see that the equation (2) comes from hyperbolic geometry.

For instance, let’s revisit the Five Term Relation. We have given an
algebraic proof of it. It turns out that this algebraic proof has an equivalent
proof in the point of view of hyperbolic geometry. Consider five points €
P!(C) c H?. (Here, P'(C) is simply the subset of H? which consists of
CU {o0}).

Now, we can consider the five tetrahedra that are formed by choosing all
the subsets of four points. We claim that Ej:o Vol(A;;) = 0. Recall that
our volumes have a sign according to orientation. This equality can be seen
if we sent one of the points to infinity. We will relate this fact with the Five
Term Relation.

Suppose we are in the situation that one point is oo, and the other points
are like in Figure 19. Observe that if three triangles converge building a
fourth triangle (Figure 19), then the product of the invariants must be 1,
i.e., wiwows = 1. This is clear if we choose wisely the pairs of sides that we
use to compute the invariants. Calling the sides which are common to two
of the triangles as wuy, us, uz, then wjwows = Z; Zi’ Z; =1.

Now let’s look at the four points which are not oo. We can certainly use
this. Suppose that the invariants are z;, z4, and 1_—20. Writing the equation,
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1 zy -1
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Figure 19: In the first picture, wiwows = 1. The second picture shows us
how we compare the invariants of the different triangles.

we get 2421 = 1 — 2y, which is one of the five equations that define the Del
Pezzo surface. We get three other equations by comparing the invariants in
the other three vertices (here we will have to use the invariant z, of the ”big”
tetrahedron formed by the vertices which are in the boundary of our figure
and oo. In this way, we get: 2925 = 1 — 21, then calling z123 = 1 — 25, we get
2320 = 1 — 24, and z123 = 1 — 29, (we already had this last condition).

We get equations that are equivalent to the fact that Z§:0 D(z;) = con-
stant. But we know that this is equivalent to the sum of volumes being
constant. Then it is easy to verify that the sum is actually zero.

4.2 Hyperbolic Structures on 3-manifolds

Definition 22 A hyperbolic manifold M is a space with a Riemannian met-
ric such that each point has a neighborhood which is isometric to an open
subset of H?.

In this case it is true that M = H?/T" where ' is a discrete torsion free
subgroup of Isom, (H*) = PSL,(C). This is analogous to the case of the up-

per half plane H?, say for instance, I' = {( CCL Z > = < (1) (1) ) mod(2)} C
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Figure 20: Gluing equation. In this case, wjwowsw,wswg = 1.

SLy(Z) acting on H?.
We have:

Theorem 23 (Mostow’s rigidity). Let My = H? /T and My = T /Ty, where
[y, Ty are discrete, torsion free, and My, My have finite volume. If I'y =2 'y
(isomorphic as groups), then

M, =2 M, (isometric)

We will try to glue ideal tetrahedra zi,..., 2y € H? in order to get man-
ifolds. We will come up with a list of tetrahedra and two sets of equations.
The first set corresponds to the gluing equations. For instance, the equation
stating that the product of the invariants of the triangles that converge in
one vertex and form a polygon must be 1, is a gluing equation (Figure 20).

Actually, looking from oo, these equations are always of the same form, i.e.,
1 zi—1
Zj’ 1—2;7 ]Zj
completeness equations. These are equations of the same nature that will
guarantee that the manifold is complete. Summarizing, all the equations are

of the form
o =1 we {20
w =1, w; Zi, ——,
; J J J ]_—Zj Z]'

The options for w; correspond to the choice in each triangle of what vertex
is going to be the common vertex with all the other triangles.

Take the example of the Figure 8 Knot. See Figure 21. The complement
of the knot admits a complete hyperbolic structure. We glue two tetrahedra.
The equations are:

wi ... w, =1 with w; € } The second set of equations is the
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Figure 21: Figure 8 Knot.

G: z1-2w(l—-w)=1

o r=z(1-2)=1
¢ y=w(l—2)=1

If we take only G, we get an affine curve C' (which will be an elliptic curve
over Q of conductor 15), where z, y are rational functions on C.

zAy=z1-2)ANw(l—2)=z(1-2)Aw+2zA(1—-2)=
=—(wl—-—w)Aw)+zA(1—-2)=wA(l-w)+2zA(1—-2)
= n(z,y) = d(D(z) + D(w)).

Eliminating z, w, we get

1
—1
1 —2 1, in other words, P(z,y) = vy*—zy*+2%y* 20y +y* —zy+x = 0
-1
1

which is called the A-polynomial of the knot and is an invariant for the knot.
We have,

2em(P(z,y)) = Vol (M) = 2D <#)
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Let’s do the other way, start with the elliptic curve C', whose minimal
Weierstrass equation is:

v2+uv+vzu3+u2

We have E(Q) = (Q),Q = (0,0), which has order 4. Let L be the (multi-
plicative) lattice of functions modulo constants whose divisors are supported
by E(Q) = (Q). L has dimension 3, because it is =& Z* with the additional
conditions Z?:o nj = 0 and Z?:o njj = 0 mod 4. But this last condition
does not influence the dimension. It is generated by u, u + 1 and v:

n nQ v u+l v
0 0] -2 -2 =3
1| (0,0) 1 0 2
2 (=1,00 0 2 1
31(0,-1)| 1 0 0

There is an involution on C', the curve defined by the gluing equation,
which takes x to 27! and y to y!. In other words, the polynomial relating
x and y is reciprocal: Pz~ y~ ) = 2%’P(z,y).

Now we are after this involution. We do not know anything about it,
except that it is defined over Q. Recall that an involution does not need to
preserve the origin of the curve, it is defined on the algebraic curve, but not
necessarily defined over the group. There are two kinds of involutions: the
ones that have fixed points, which are of the form ¢ : P — —P 4+ R; and the
ones that do not have fixed points, of the form o : P — P+ R with 2R = O.
The involution z — =1, y — y~! has a fixed point (z,y) = (1,1).

We will pick:

oc:P——-P+Q

This involution preserves L. We want z,y € L such that 27 = 27!,y =y~ L.

Their divisors 0 must satisfy 67 = —9. If
3

5= n;(jQ) n; €L

Jj=0

then, 0 must verify the following conditions:
3
1. ijo 71]' =0
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2. 23:0 njj =0 mod 4
3. ni—j = —Ny

The first two conditions are equivalent to the fact that § is a divisor and
the last one expresses that 6 = —4, in fact, 0 : O <> @), and 2Q) <> 3Q.

Putting the conditions together: § = ng((O) — (Q)) + n2((2Q) — (3Q))
with ng+ny = 0 mod 4. Hence the space of the ¢ is spanned by (2, —2,2, —2)
and (1,—1,—1,1). Define

u—+1
-

Then (z) = (2,-2,2,—2) and (y) = (1,—1,—1,1). (The signs are included
in order that the final equation is exactly our original polynomial P). We
have 27 = 27! up to a constant and the same with y. We want to verify that
this constant is 1. In order to do that, we compute the involution according
to (u,v).

T =

u
y Y= ——
v

(1,017 = (0,0) = (1,0) = (0.0) (.0 == 1) = (51, 22D

v V2

Then

Next, we want to get a minimal polynomial relating x and y. We have:
w=v>+uv+ov—ud—u?=0

A=v’r+u+1=0
B=yv+u=0

Computing resultants, it is possible to get the polynomial:
Res, (w, A) = Ay (z,y,u)

Res,(w, B) = By(x,y, u)
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We may need to factorize A; and B; and get rid of common factors. After
that, we compute
R(z,y) = Res, (44, By)

Again, we may need to factorize R in order to get the minimal polynomial.
In this particular case, we get

R(z,y) = P(x,y)”

where P(x,y) is as before:

. Payy)=ay* —oyP + 2%y — 22+ —ay+ 2 =0

the A-polynomial of the figure 8 knot.

Observe that the Newton polytope has three interior points, while we
started with an elliptic curve, which has genus one. The fact is that P(z,y)
is singular, and hence, the number of interior points does not need to be a
equal to the genus.

From the manifold point of view, we had

zAy=zA1—-2)+wA(l—-w)={z,y} =0 in Ky)(Q(E))
Note {z,y}* = {27,y } = {z7 ',y '} = {z,y}.

Theorem 24 Bass — Tate. {z,y} arises from K>(Q(E)?) = K»(Q(P!))

We want to solve z Ay = Z;VZI rjzi N (1 —2;) r; € Q. This is almost

the same as decomposing the manifold into tetrahedra.

We want to find the z;. We are looking for functions such that z, 1—z € L.
Two of them are 2y = —u and 2z, = “72 Now {uA (u+1),uAv,(u+1)Av}
is a basis for A?(L). We will express z; A (1 — z;) as a linear combination of
elements in this basis.

2 2
—u A (u+1) %A(l—%) T Ay
uA(u+1) 1 -2 -1
uANv 0 2 2
(u+1)Av 0 -1 -1




Figure 22: Integration path. First picture: |z(y)| > 1, while |y| = 1. Second
picture: the corresponding path v in the elliptic curve.
(Here we do not care about constants). Then

s Ay=2AN(1—21)+ 20 A (1 = 29)

modulo torsion. The decomposition is not unique.
Our goal is to show

mm(P) = 2L'(x_3,—1) = Vol(M)

We have 2D (1+‘2/j3> = L'(x_3,—1).

We know n(z,y) =d (D(—u) +D (“;))
Claim:
2mrm(P) = /n(x, Y) v is a l-cycle in E
v

By Jensen’s formula,

where z;(y) are the roots of P for a given y. Since we integrate on |y| =1,
and n(z,y)[|,,-, = log|z|dargy, the claim will be proved if we observe that
|z1(y)] > 1, and |z2(y)| < 1 in the whole domain. This is true and the
approximate path that x;(y) does as long as y goes through the unit circle,
is described by Figure 22.

At the same time, in the elliptic curve, the corresponding path - connects
two conjugate points R and R’ = R. Observe that there is no contradiction in
the fact that 7 is not a loop. The fact is that R and R’ are two different points
on the elliptic curve that lie over the same singular point in the polynomial
P (both lie over (1,1)).
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Now we are able to apply Stokes Theorem. Define V((u,v)) := D(—u) +
u2
o (%)
2xm(P) = [ nle,) = VIR) = V(R) =2V (R
v

Here, R = (&, &), R = (&', —&1). This can be computed directly
from the formulas that relate x,y and wu,v. Hence,

mm(P) = 2D(&) = Vol(M) = 2L'(x—s, —1)

Our last step was to show that n was exact. In order to do that, we
computed the primitive. There is an algorithm to find the primitive in the
general case. We suppose that the Tame symbols are trivial. We want to
write

x/\y:erzj/\(l—zj)+cl/\cg r; €Q, 2 €Qt), i €Q

We will use the following identity due to Tate:

(t—a)A(t—b) = — (Z:Z A (1 _ 2:3)) +(t—a)A(a=b)—(t=b) A (h—a)

This is a formal identity which can be easily proved by observing that t’—“ A

(1— &%) = =2 A =L The idea is to reduce z Ay to a sum of terms of the
form *« A (1 — *) and “constants.

x:AH(t—aj)”f y:Bl_[(t—bk)m’c aj # by
J k

t—a; t—a; y(a;) z(bg)
Ay = — : A1 - 2 (t —a;) N — t—bg) A
Y %n]mkbk—aj ( bk_aj>+zj:n]( %) B zk:mk( 2 A

y
AN=+—ANB+AAB=
+ /\B A/\ + AN
t—a y(a] Y
= — 1— <
Znﬂmkk_a] < bk—a3>+ZA B %:B A
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- Znﬂmk bk) - CLJ <1 btlc_— CLJ>+Z A A y a] Z bk +A/\B

k

Now when we tensor with Q and apply 7 the last terms are zero because
A, B are constants and y(a;), z(b;) are roots of unity. This is because the
Tame symbols are trivial and those numbers are essentially the Tame symbols
(up to a sign). Here we use that a; # by) and 7 is zero on constants. We get,

(e ( 2D (bk—a))

Let’s do another example,

P+t+1 3t?
rT = ——— e —
t-12 YT -1y

(this example has not been related to hyperbolic manifolds yet).
The minimal polynomial relation is:

1
~1 -2, Py =2>-20y+y*—22—y+1
1 -2 1

By looking at the roots of the side polynomials and observing that they have
to be roots of the unity, we conclude that the tame symbols are trivial. We
can also compute some of them

_ 32 \?
(@, y)i=1 = (=1)*? (m) _ =1
o 1L _ (& -1 1
(x7y)t:§3 - ( 1) y(fg) - 3§§ 3

We want n(z,y) = d(D(£(t))). D : P'(C) — R can be extended by
linearity to Q[P'(C)]. Applying the above procedure:

R S = R = R = R

Observe that this expression is Galois invariant.
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Figure 23: Integration path. |z;(y)| and |z2(y)| go through symmetrical
paths.

Now the Mahler measure is

2

() =gz 3 [ ot el = [ty

i=1

For y fixed there are two possible solutions to x. The path that x; and xz,
do while |y| = 1 is described by Figure 23.

In order to compute the integral, since 7 is exact and we want to apply
Stokes Theorem, we need to find w; and w;. They are the intersection of
P(z,y) = 0 and |z| = |y| = 1. To find this intersection, we consider the
reciprocal polynomial:

1 -2 1
P*(z,y) = 2°y’P(z ',y ") = 2y’ 2wy Py 4y’ —2zy+a® = -2 -1
|

Then
P(z,y) = P*(z,y) =0 for |z|=|y[=1

Let’s compute the minimal polynomial of wy = (z1,y1) = (x1(t1), y1(t1))-

Res, (P, P*) = (2% — 4z + 1) (2" — 22° — 27 + 1)
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The first factor has two real roots whose module is # 1. The second factor has
two roots of module 1, which must correspond to 1 and Z;. Now x1,y1,%; €
F', a number field of degree 4, ro = 1, and Ap = —1728. Claim

3-17282(p(2)
' 2577

for some s € Q*. (s ”looks a lot like” £). *

m(P) =s

5 Bloch Group
Let F be a field, £ = 3, n[a;] € Z[P!(F)]. We have a function:
Z[P'(F)] L5 A2(FX)
£— anaj/\(l — aj)

(we omit the sum if a; = 0,1 or co).
In Ky(F), {a,a} = {a,—1} and this one is torsion of order 2. Then, up
to 2-torsion we have an exact sequence:

ZP(F)] % A(FX) — Ky(F)
anNb — {a,b}
Define
A =ker 0

Note that if (2, ...24) € S(F) (Del Pezzo surface over the field F), then

[z;] € A(F)  (ie.d (Zm) = 0)

Define

G(F) = group generated by {Z[ZJ] | (z0,-..,24) € S(F)} C A(F)

Jj=0

'How do we compute s? In GP:
zv = zetakinit(x? — 2x® — 2x + 1)
zetak(zv,2) x 172815 /(P18 x 25)
= 3.60526644...
= 7w m(P)



Finally, define the Bloch group to be

B=A/G

5.1 Relation with K-theory

Define Ki"(F) = K3(F)/K§°. Where dec and ind stand for decomposable
and indecomposable respectively. Then

Ky(F)eQ=B®Q

Given o : F' — L, it induces B(F') — B(L). Then for

o:F—=C
We have the following diagram:
B(F) —2+ B(C)
D
R

We get one different map for each complex embedding.
We have the following facts:

e D is, up to a factor in Q*, the Borel’s regulator.

e The rank of B(F) is the order of vanishing of (r at s = —1, namely
n_ =rTo.

Theorem 25 Let&,..., &, be aQ - basis for B&Q. Letoy,...,o0,, pairwise
non-conjugate complex embeddings of F'. Then

|Ap|2¢p(2)

Ten4

det (D (0;(&k))) ~ox

We do not know how small the left term can be. If we knew this, we might
be able to estimate the rational constant.
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In particular, if ry =1,

Some examples:

QV-7):

14+v=7 —1++-7
2 +
2 4
is likely to be a generator of the Bloch group, which has rank 1.

Qv-23): 2 [1*7\2/——23] +7[2+V-23]+ {3 - \2/_—23] -3 {5 il ‘2/_—23} +[3+v-23]

If we knew how small D(£) can be, we would get some clue about whether
those numbers are generators of their Bloch groups or not.
Consider our former example

e+ 3t !
e YTy D
1 -2 1

Then 27rm(P) = V(wy) — V(w1), wy = (@1, 91), 21| = |nn| = 1.

In order to find V, we need a decomposition of the form zAy = 3", r; 2; A (1 — 25),
r; € Q. We have found this decomposition in the example above. Note that
the decomposition is not unique, since we can always add elements that come
from the five term relation. We claim that:

17282 (2)

27Tm(P) ~Qx 287r6

It is a consequence of Borel’s Theorem.

V(w) =D(E(t)) =D riD(z(tr)) where &(t) =Y rifz(t)]
J J
Borel’s Theorem, for ro = 1 and £ € B(F') not in the torsion, says that

|Ap|2¢r(2)

D(&) ~ox — o,

Ny =71+ 7o
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D(E(1)) = D ry (1) A (L= 25(t0)) = a(t) Ay(ta) £ 0

Where {(t1) = > ;rj[2;(t1)]. The last statement is true (always modulo
torsion) if and only if 3 a,b € Z such that

2(t)* = y(t:)"

there is no reason a priori for this to hold. However, it does.
Claim: y; = z?. In this particular case, this fact is not surprising since
z1,y1 € Op. We have
O —R
e — log|o(e)
x1,y; are in the kernel of this function. The rank of O =71 + 1y — 1 = 2,
hence ker is of rank 1. Then, there has to be a relation (initially, up to roots

of unity, but then you can raise to a higher power).
Therefore, £(t1) € B, and we can use Borel’s Theorem:

27m(P) = D(E(H) e er?)
If
TAy=Y rizA(l-z) r;€Q (3)

J
then n(z,y) = dD(}_; 7;(2]), and we use Stokes Theorem to compute 27rm(P)
in terms of D.

2mm(P) = /n(x, y) where 0y = Zﬁk[wk] € = *1
v k

7 is a path on the surface P(z,y) = 0 (see Figure 24) and can be chosen in
such a way that the end points wy, correspond to (xg, yx) with |zx| = |yx| =
1. Then by Stokes Theorem: 27m(P) = D(§) where £ = >, &, & =

€r > 75 [z (wk)]- i

The question now is when &, € B(Q).

O(&k) = e er zj(wi) A (1 = 2zj(wk)) = e, x(wy) A y(wy)
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Figure 24: v may have several components over C.

Figure 25: M is a hyperbolic 3-manifold such that [0M] = 0 in Hy(M). For
instance, in this picture OM ~ T2,

& € B(Q) <= z(wi) ANy(wg) =0, (e.g. x(wg) € o). If & € B(Q), then
Borel’s theorem will give us some information about 2rm(P).
If we start with a 1-cusped hyperbolic 3-manifold, then we get the equa-
tion (3). See Figure 25.
We want z(w) A y(w) = 0, w € C(Q). The condition corresponds to
Hyperbolic Dehn surgery:
z(w)" = y(w)"

We have the following situation:

D(¢)

Mahler measure

Borel’s theorem relates to

Vol(M) - Cr(2)

We will see the connection between the volume of the manifold M and

Cr(2).
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G. Humbert: Let K be an imaginary quadratic field, I' = SLy(Og) —
SL,(C) c H3. (T is called the Bianchi group). Then M = H?/T is an
orbifold.

Theorem 26 (Humbert Formula)

|Ak[2¢x(2)
- 47

This is a true equality, without hidden factors.

One proof of this uses Tamagawa numbers and another proof uses Eins-
estein series.

Before proving it, observe that

Vol(M)

GL?(FQ)

A\

(¢" = D" —q)
qg—1
Note that 1 — ¢ 2 =1 — N(P) 2 is related to 2 in (x(2).

Idea of the Proof (Humbert Formula). This proof can be found in [GK].
Look at the binary Hermitian positive definite forms

#SLy(Fy) = =@+ - = —-q=¢1-¢?

)\:(a,b,c)—><2ba 2bc> a,c € Ryg, b € C, A()\) = bb — dac
Note that SLy(C) acts on these forms preserving A.
Let
V = RxCxR
U (a,f), c)
Vt = a,¢>0, bb—4ac <0
The map

2c

VA
A—> (ﬁ,%> ECXR>0 :H3

is compatible with the action of SLy(C). The pull back by this map of a
fundamental domain for SLy(Oy) in H? is a cone X C V. Figure 26.

The function bb — 4ac is a quadratic form of signature (3, 1) for V, which has
dimension 4. We have A C V' lattice: (a,b,¢), a,b,c € Og. Now,

Z(s)= > JAN[*  forR(s) > 1

eEANX
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Figure 26: The area of the cone X is proportional to the hyperbolic measure
of the graph.

Dirichlet principle states that Z has a pole at s = 1 and Res,_1Z(s) =
Vol{zex||A(z)|<1}
A

Hur|nl‘)ert identified and related Z(s) to (r(2s) by using quaternion alge-
bras. What is the relation between the Euclidean volume of the shadowed
region and the hyperbolic measure of the graph above it? There is a con-
stant relating both numbers. It can be proved in dimension 1 by observing
the invariance by the action of SL,y, but it is true for several dimensions. [J

General case: Let B/F be a quaternion algebra. Let O be a maximal
order of B. Let I' C O be the units of norm 1. We have,

H R o ramified
B<S B@RorC=<{ My(R) R o unramified
M,(C) C

If k = # of unramified real places, I' acts on H = (H?)*¥ x (H?)™ discretely.
eg. if F =Q, B= My(Q), then O = My(Z), T' = SLy(Z). We have in this
case that SLy(Z) acts on HZ.

We have

Vol(H/T') = (H (N(v) — 1)> 22nf3|'1§F2|§7f§1(2r2k

veS
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where S are the finite places where B ramifies.
In the example above, Vol(H? /SLy(Z)) = % =
The following development can be found in [CCGLS].
We had the following situation: M is a 3-manifold, 9M = T? (torus), (see
Figure 25) M = JA., (disjoint union of tetrahedra). The gluing equations

give rise to a curve. From the work by Neumann — Zagier in the 80’s:

N
Z (1—z) up to torsion in  A%*(C(C)*) ® Q

=1

Note that {z,y} = 0 in K,(C(C)) ® Q = n(x,y) is exact. (And therefore,
m(P) can be computed using Stokes Theorem). We are going to prove that

{z,y} =0.
Recall: if A is a commutative ring with 1, then

1 — Ky(A) —s St(A) -5 B(4) — 1

is the universal central extension.
If we have a presentation of G,

1—R—F —G—1

define
HZ(G) = [Fa F]/[Fa R]

We have
K5(A) = Hy(E(A))

We want to give a curve C' and two functions on the curve, z, y such that
{z,y} =0in Ky (C(C)).

Let
u 0 0 v 0 0
u,v € A, 0O wto],[01 0 € E(A)
0 0 1 0 0 v!

such that u, v commute. Then

{u,v} = [¢"(u), ¢ ' (v)] € Ky(A)



Take z,y € G group, such that [z,y] = 1. For instance, G = m (M), M
hyperbolic 3-manifold, 9M = T? and z,y generators of 7 (OM) = Z2.
Consider
p:G— E(A)
a representation of G. Then [p(z), p(y)] = 1. If p(x), p(y) are diagonal, then
we have a symbol {p(x), p(y)}. Define H := (x,y). Then

HZ(H) - HZ(G)

ol

And the diagram commutes.

Now {p(z), p(y)} = 0 if [z,y] is trivial in Hy(G). For example, if M is a
manifold as before, G = m (M), and H = m(T?) = Z>.

Hopf’s formula says that

H2(7T1(X)) = HQ(X)/IHITI'Q(X)

z,y generators of T2, [z,y] =1 =

Hy(H) - H5(G)

~) [a=2

Ho(OM) /Tm 703 (OM) —» Hy(M)/Tm 75(M)

But 7% = M = T? is trivial in Hy = f = 0 = p|g(Ha(H)) = 0, i.e.

{z,y} =0.
T (OM) = (u,v).

p:m(M) —  SLy(C)



then {p(z), p(y)} = {2,y y™} = {z,9}* = {z,y}* = 1 in K,(C). We
want to do this in a universal way. i.e., u,v € E(A),[u,v] = 1,~ {u,v} €
K> (A) this process is stable by conjugation, in this case, universal means up
to conjugation.

We want to describe such representations. If GG is a finitely generated
group, ¢, - . - g, generators, rq,...7,, relations,

p:G — SLy(C)
9 = A4
T — Id

then all the representations are described by an algebraic set.
Universal construction: look at all

p:m (M) — SLy(C)
u — diagonalizable matrices
v —

this is parameterized by some algebraic set. If C' is a component of this
algebraic set, we get that {z,y} =1 in Ky(C(C)).

In the case of the Figure 8 Knot, C' is an elliptic curve of conductor 15.
What is the significance of the primes 3, 57 We will see:

111 1
m 3 3 = EL,(X’ -1)
111

where y is the conductor of Q(v/—15)/Q.
We will find the decomposition of x A y by hand.
The polynomial has to do with the same elliptic curve of conductor 15:

E:v’+uv+v=u®+u?

P(z,y) = 0 <= w? = disc,(P) = —(x — 1)%z(42? + Tz + 4).

r = —(u+1)
— o4l
Yy = u(u+v)

x,y have divisors supported on H = (Q) C E(Q) where Q = (&, —&3)
and |H| = 8.
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’ d>..nj =0
n;(jQ) is a divisor iff { AR
]Z; i(1Q) >, jn; = 0(mod38)
L is the lattice of functions whose divisors are supported on H modulo con-
stants (and has dimension 7). We want z, 1 — 2z € L.
L/Q has rank 5, spanned by {u,v,u+ 1,v+ 1,u + v}.
Now, in wedge 2,

—u, u+1

—v, v+1
—(u+v), 1+u+v p el

_ v+l utvtl

u 7
u+v U

v v

Note: R — R + 2@Q) acts on L/Q. (2Q = (0,0) which has order 4).
Applying to these facts, we get a lattice of rank 8 in A?(L).

31'/\y = 321/\(1—21)+ZQ/\(]_—ZQ)+23/\(]_—23)+Z4/\(1—Z4)+Z5/\(1—Z5)+2ZG/\(]_—26)+2Z7A(1—Z7)

—v? —v v(v+1)
0=, Z2= L = —v, =L
YT w2(u+1) 27 (u+1)2 ’ YT u(u+1)?

—(v+1 u—+v

25 = —(u+v), zﬁzi(u ), w=—

Ww,) = dDE@ ), &= [l + 5 (] + ]+ [mal + [as]) + 2 (a] + o)

In the integration only one root matters, since the other has module < 1.
See Figure 27.

wy = (—2, *1+%/—T5>, wy corresponds to the point (x,y) = (1, —1), which

o:x — xt
y = oyt
The fixed points of 0 : R - —R + 4Q) are: 2R = 4@Q), then R = 2Q + U
with 2U = O. Then the primes involved cannot be different from 2, 3, 5.

is a fixed point of
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S =

Figure 27: One of the roots has always module < 1.

mm(P) = D(&(wo))

Does Borel Theorem apply? i.e. Is &(wy) € B(Q(v/—15))? xz Ay =
Y1z A (1 — z;), plug in wy, we get

0=1A—1=2(wp) A y(wy) = d(&(w))

Then &(wy) € B(Q(v/—15)), therefore, by Borel,

3
152 C@(\/—T5) (2)
T2

D(&(wo)) ~o
This implies that
’ITL(P) ~Qx L,(X, —]_)
By Humbert’s formula for K = Q(y/—15),

_ 152¢k(2)
472

M =W /PSLy(Ok),  Vol(M)

We want to relate mm(P) and Vol(M), this will be done through D(&(w)).
We know (k(s) = ((s)L(x, s), and ((2) = %2.
Recall that if

M =|JAu, then, Vol(M)=> D(uw)

J J

There are two possible approaches:

52



1. Gangl, H. M is decomposed into tetrahedra by finding a fundamental
domain for T' = PSLy(Ok) on HE. We get that Vol(M) = D(4), 6 €
Z[K]. The decomposition we found for z A y matches this decomposi-
tion, £(wp) = & This proves:

m(P) = %L'(X, —1) = const. x L(x,2) x + Q(/—15)/Q

3
If we are not lucky: %’5(2) = Vol(M) = D(6), and mm(P) = D(&(wy)),
so we only need

2. Nathan. Observe that

1 11
P = 3 3
1 11

is the A-polynomial of a 3-manifold and this is actually more informa-
tion than the decomposition into tetrahedra.

e Get a Bianchi orbifold M = H?/PSL,(Ok), with K = Q(v/—15).
Baker, M.D: when is M or some other H? /T, with I" C T (finite
index), the complement if some link? (e.g. the Fig 8 knot, M =2

/T, T C PSL, (2 [22]). 0

— d
Q(v—15) 2 yink
(the question of how to glue the tetrahedra is combinatorial).
In this particular case, we have (2,0)(3,0)(0,0)(0,0) and apply
Dehn’s surgery to fill out one cusp.
e Now produce two other manifolds M; = mi29(0,3) (0,0), and
M, = mg12(0,0) (3,0), by surgery which have a decomposition
into tetrahedra over the field Q(y/—15) (this is done numerically).

e M and M; have a common 6-fold covering.

OTt is proved that there are only finitely many discriminants and finitely many orbifolds
that are the complement of some link for |disc| < 71.
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e M, and M, have a common 3-fold covering.
e The A-polynomial of M, is P.

e The point (1,1) (the point of intersection with the circle)<> com-
pletes the structure on My, i.e., this gives 2rm(P) = Vol(My).

e Then, M and M, have a common covering M’:

MI

M M,

So the volume of M and M’, and of Ms and M’ are related accord-
ing to the degree of the correspondent coverings. In this way we
can relate the volume of M, and M, but we have Vol(Mz) ~ m(P),
and Vol(M) ~ (x(2).

Given M a 3-hyperbolic manifold, with a certain triangulation, we get

G: [z -2)==+1
J

C: [z - 2) =+1
k

relaxing C, GG produces a variety, if the manifold has one cusp, the component
(G is an algebraic curve.

So, projecting to z,y, (rational functions on this curve), we get an affine
curve in C* x C*, whose equation A(x,y) = 0 is the equation of the A-
polynomial .

Construction of A-type polynomials. We want

e n(x,y) exact: i.e., C curve, z,y rational functions and n(z,y) exact.

e P(z,y) =0, P reciprocal.

!The A-polynomial is an invariant which has been discovered recently.
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s ANy =31z N1 —z) = {z,y} € K(C)
Universal construction of the trivial case:

azﬁ, K =Q(W-7), 2[a] + [a+ 1] € B(K)

(this data corresponds to the manifold moog).
We want

2aN(1—a)+(a+1)A[l—=(a+1)]=0 (up to torsion)

This is true since a + 1 = —(1 — a)®> and 1 — (a + 1) = —a. Then, a,
1 — a, generate (up to torsion, i.e., +1), the subgroup of C* containing the
four quantities: a,1 — a,a + 1, —a. In fact, we can write those numbers as
(multiplicative) linear combinations of the two elements:

a 1l—a a+1 —a
a 1 0 0 1
1—a |0 1 2 0
Lemma 27 U of rankr, uy,...,u, generators. zy,wy,...zy,wy € U. Then
N
sz/\wj :Zajkuj/\uk
Jj=1 J<k
Let A = (aji) with ay; = —ajy, then
A=MJM
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where

M= (m',n',....m" n), J= -1 0
0 [ 0 0
0 [ 0 1

and z; = u™ and w; = u” (using the multi index notation,).

In our case,

1010
M‘<01 1

1001 0 1
0 20)"]_ -1 0

taking uy = a, up =1—a. Then, 21 =z =u; =a, 23 =u =a+ 1.
We get 221 A (1 — 21) + 23 A (1 — 23) = 0, the sum of three tetrahedra.
In order to see that it is in the Bloch group, (it is easy to) verify that
MJM! = 0.
We want to extend M, by adding two rows so that M JM! = 0101 (

Take,

0
-1

1 01 0|0 1
0O 170 12 O
M= -1 0y 1 00 O
0O 0[O0 1|1 O
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Now, each column of M gives a monomial in uy, us, z,y.

le_1+u2 =1 ~ z1+w1:1 ~ Zl+(1—21):1
wmrtuy =1 ~ zZmtwy=1 ~ z+(1—2z)=1 (4)
wy+u; =1 ~ zm+wz=1 ~ 2z;3+(1—2)=1

By the Lemma, M JM?! corresponds to 2; A w; + 22 Awy + 23 Aws =z A y.
Now, the equation (4), leads to 21 A(1—21)+22A(1—22)+23A (1 —23) = xAy.
It is much easier working with matrices than working with this expression.

The curve C' that we get is given by (4). Projecting onto z,y, we get the
polynomial

P(z,y) = oy® +y> — 22y* — 22y + 2% + 2
1 1

Then we need to solve P(z,y) = 0, |z| = |y| = 1. We get (1,1) <
2[a] + [a + 1].
Therefore,

mm(P) = Vol(moog) = %CQ(\/j)(Q) ¢ € Q known
™

This last equality comes from the Bianchi manifold theory.

Now, in a general setting, we start with M € Z**5, MJM! = (0101 < _01 é )

We can modify the example above. Take U € Spg(Z) (or, more precisely,

UJU* = J). Then can take M’ = MU and M'JM" = 0L10L < _01 (1) >
The polynomial P associated to M’ may not be reciprocal. How do we

guarantee that P is reciprocal?

1 0|1 0|0 1
O 170 112 0 00
~1 0|1 0|0 o | 7m
0O O] 0 1(1 O
We have an involution z — 7%, y — y~ L.

57



1 0 1 0 0 1 1 0 1 0]0 1
0 1] 0 1 2 0 Ry — Ry + Ry 0 1] 0 1}]2 O
1 0}-1 0 0 0 1 0;-1 00 O
0o 0 0 —-1,-1 0 0O 170 0] 1 O

We can pick U € Spg(Z) such that it preserves this involution. By the
shape of the involution, U must be of the form:

(47)

U= <3‘§> withdet(j?):l

In general, M = (m!,n', m? n? m3 n?)

FTu™ +u™ =1
+u™ +u" =1  where u = (uy, us, x,y)
Fu™ +u" =1

(here signs can change without affecting the torsion part).

For instance, take < _01 _01 > in the example, then we get
-1 0|-1 0|0 1
- 0O -1} 0 —-1]2 0 - 0 1
M = 1 ol-1 olo o M JM™ =0L0L 10
o o0} 0 —-1]1 O
and the equations:
w4 uyt =1 ulrduy, = 1
M uter ety =1 M:Q wr+uy = 1
udy + uy =1 wy+u; = 1
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And we get the polynomial

-1
-1 0 1
2 1
Py 4 —4 —zyS 422y +atyt —yS 22yt —4a P Ay — 222y Pty — ey —ay+a?
-1 -2
-1 0 1

which is not exactly reciprocal, but it is just a question of changing one sign.
We have 2mm(P) = [ n(z,y), where,

9y C {Pla,y) = 0} N {fe] = ly| = 1} = {(£1,£1)}

On this example, only two points contribute ti the Mahler measure: (1,1)
produces a cubic field F} ? of discriminant A = —23 and (1, —1) produces a
cubic field F, of discriminant A = —31. Finally,

m(P) = 3Cr, (2) + 3¢, (2)

The equality has to do with the theory of Bianchi manifolds. (This polyno-
mial is actually the A-polynomial for m367).

5.2 Maillot’s calculation revisited

Let C' be a curve, z,y rational functions such that n(z,y) = dV. Then
2nm(P) = [ n(z,y) =V (97).
Eg. C=PL o=t y=1—t. P(z,y)=x+y—1,V = D(t). If we scale
x,y by a,b e C*,
x y
Ty = — Y1 = 7

a b

2In order to determine which field resolves the point (1, 1), we use the equations

ufruby P +ulz T uy?
uly + uy

{ uSulz® + uludz? =

Then set x =y = 1 and we get

(1 —uj)™us + (1 - u3)uy = 1
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s

N |y|=1//

Figure 28: There are three different cases when scaling by b

Pi(z1,y1) = P(axz, by)
e.g. ar + by —1 = 0. Then,

2mm(Pr) :/ n(z1,91)
Y1
but

n(xy, y1) = n(x,y)—n(a, )—n(x,b)+n(a,b) = dV—log |a|d arg y+log|b|d arg x

E.g.
1
-1 =2
1 -2 1

We get a formula for the Mahler measure of the general polynomial P;
starting from the formula for the Mahler measure of the particular polynomial
P:

2rm(Py) = Z V(w) + log|al Z a's + log |b| Z B's
w
Observe that the number of summands may depend on the parameters a, b,
for instance, varying b we may have four, two, or zero points w. See Figure

28.
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5.3 Ladders

We will say a few words about relations among polylogarithms of powers of
a fixed number «, known as ladders.

Question: How do we write down elements in B(Q)? Suppose a € Q
satisfies a cyclotomic equation, i.e.

o0

H (" — 1) =(¢a¥, ¢, €Z, ¢, =0 for almost all n, ¢ € pus

n=1

Claim: .
C TL
£=3 o' € BQ(0) 82

Proof. It is enough to see that 9(§) =

o oo o.¢]

C_” n _ A — _ A n\Cn __ _ an\Cn __ N __
Zna A (1 a)—Za/\(l a”) —a/\H(l ") =aNtla” =0
n=1 n=1 n=1
0

If « satisfies many linearly independent cyclotomic equations, we will
eventually find one with D(£) = 0.

In what follows, [CLZ] is a good reference.

If « is the real root of the Lehmer polynomial of degree 10 which is also
> 1, then [[07, (@™ — 1) = (o implies that ¢ must be real and positive,
then ¢ = 1. Also, é is conjugate to a. Conjugating, we get

e’} 1 Cn
- 1 —aq N
(1) =

Comparing the powers of «, we conclude:

o0
Z nc, = 2N
n=1

If we define ]
Pi(z) := —10g|1—z|+§ log |2 |
More generally, the Polylogarithm function P, is a modified version of
oo Zm
Li,(z) = —
in(2) mz::I -
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Then

i e Pi(a™) =0
n=1

For the same «, [CLZ] found a numerical relation of the form:

360

Z cn Pig(a”) = cen'®

n=1

Now, finding multiplicative relations among « and o™ — 1 is the same
as finding the relations among « and cyclotomic polynomials ®4(«). The
equation [[°2, (1 — a™)» = (o™ translates into multiplicative relations for
the N®; («). It is known that N®, () = £1 for 66 values of £ < 1000 (for «
the Lehmer root).

o,
1 1 1
g [NO ()] = —— S logla — €] = —— S log |P
¢(k) Og| k(a)| d)(k) az’;d Og|Oé §| d)(k) zﬁ: Og| (§)|
(Riemann sum for) ~ QLm log |P(x)|d—x ~ m(P)
|z|=1 z

They have found 71 linearly independent cyclotomic relations for a. In fact,
they found

> e Pile") fork=1,2,...,16
Consider also the example in [B-RV]. The Smyth’s calculation:
Pz, y) =p(x)y —q(z) € ZLlx,y|
where p, ¢ have roots in pi, U{0}. Then P(z,y) =0is P', so n(x,y) = dV.
Proposition 28

then

N 00
2mm(P) = + Z "Z

n= m=1

e
S

1
where v, are the roots of p(x)p(z~"') — q(z)q(z™") = 0 which have odd mul-
tiplicity (this is a cyclotomic equation).
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Figure 29: Case of «,, of even multiplicity.

The hypothesis of odd multiplicity is needed so that as long as x moves on
the unit circle, % enters or leaves the unit circle in each «,. If o, had
even multiplicity we could have a case as the one in Figure 29.

Question: Can you find A, B cyclotomic (i.e., rational functions such that
the roots and poles € i, U {0}) such that A+ B =17 A good example due
to Mossinghoff, Pinner, Vaaler:

<7—1> @1t

z—1 (x —1)2

Dividing by ™ we get two cyclotomic equations whose sum is 1.
In [B-RV]:

9
m((x+1)*y+2*+z+1) = Zm((x + 1)ty 42t 4+ 1)

—3+/—7
o= —"-

¢ =Tla] + [0”] = 3[a”] + [—a] 1

It is quite hard to prove that actuallyD(&) = 0.

6 The elliptic curve case
Let C'/Q be a smooth curve. The regulator map:

reg : K,(C) — H'Y(C,R)~
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{f.9} —=n(f 9)

Observe that H'(C,R)~ is a R- vector space of dimension equal to the genus
g of the curve. We have

This should be an analogous of what happens with number fields (Borel).
The simplest case is with ¢ = 1, E an elliptic curve. We should have:

Covolume of image of reg ’\?J@x L'(E,0)

This is not a Theorem but a Conjecture. Let E/Q be an elliptic curve.
Supposed that it is given in Weierstrass form:

y2+a1xy—|—a3y:x3+a2x2+a4x+a6 a;, €7

Then consider
#E(F,) =p+1—aq,
If £ mod p is not singular, we get
_ l—apT—i—pT2 _ H!
(1-7)1-pT) HOH?

Z(E mod p,T)

If E mod p is singular, E™ mod p (nonsingular points) carries a group
structure and has only one singular point.

# points #E modp a, kind of reduction

" mod b & (F,,+) P p+1 0 additive
moap = (T, x) p—1 P 1 split multiplicative
(]F;2 /B, %) p+1 p+2 —1 mnon split multiplicative
and ) T
—a
Z(E modp,T) = P
( T ma )

Observe that in both cases we have the same denominator and it does not
depend on the elliptic curve. So, it makes sense to codify the information of
the numerator. Define:

LE,s) =[] =aw~ +p=) [ —ap™)™  R(s) >

pES peES
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where S is the set of primes of bad reduction.

Note: the Euler factor vanishes at s = 0 iff a, = 1, i.e. if E has split
multiplicative reduction.

Modularity means

L(E,s) = L(f,s) f newform of level N weight 2

Define
2T

W) U L(9)L(E. 5)

L*(E,s) = <
Then
L*(E,s) = +L"(E,2 — s)

The product converges for R(s) > 2, then L*(E,2) # 0. Therefore,
L*(E,0) # 0. Since I'(s) has a simple pole at s = 0, we conclude that
L(E, s) has a simple zero at s = 0.

Conjecture 29 (Bloch — Beilinson)
r:Ky(&) — R

Ky(E) is of rank 1 and
LI(E, 0) ~Qx T(g)

where £ € Ky(€) is a non-torsion element.

What is K5(€)? &£ is the Néron model of E and it corresponds to a
condition of integrality. To fix ideas, we would say that £ is to E the same
as Or is to K.

We had

Ko(E) — K> (Q(E)) tame symbolg @CX

Now we have

Ky(€) —— K(E) — P K (Emodp)

p

We have defined the regulator function:

reg : K,(C) — H'Y(C,R)~
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WF“\

1 0 1

Figure 30: Ej is generically a curve of genus 1.

Now K»(€) C K»(E) and we can restrict reg to K»(&), then we get a number
by integrating:

r{fo)= [ alre) e®

o
where Z~v~ = H|(E,Z)".

K{(F mod p) is a group such that K| (Emodp)® Q is trivial unless p is a
prime of split multiplicative reduction.

Next, we would like to write elements of K»(E) explicitly.

1. Proposition 30 (Bloch) Let f,g € Q(E), such that their divisors are
supported on torsion points, then there exists f; € Q(E)*, ¢; € QF

such that:
{f9}+ Z{fiagi} € Ky(E)

2. Newton polygons.

e Pick a polygon A with only one interior point (Figure 30). There
are 16 possible choices up to GLy(Z). ®

e Pick integer coefficients for the sides such that the tame symbols
are torsion. We have a finite number of choices for this, but the
tame symbols do not impose any condition on the center coeffi-
cient.

This produces a family of curves Fj that generically have genus 1, with
{xay} € K?(Ek:)

3Scott proved that given r > 0, there are finitely many such polygons with #A° = r.
For r = 0 this is clearly false, take for instance any rectangle with one side equal to one
and the other side any length.
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Other versions of the regulator:
The Tate curve is
E(C) = C*/¢"
for |
E(C)=C/L where L=Z+7Z1 T€H, q=e"

the correspondence is given by
C—C*

2€C —u=e"

Well defined since clearly
z+1—=u

Z+T—uq
If u € C*, define
D(u,q) =Y _ D(uq")

nez
It can be proved that this series converges absolutely and uniformly over
compact sets. Note that summing in this way we assure that the function is
defined on the quotient C* /g7, i.e,

D(ug,q) = D(u, q)
So we get the elliptic dilogarithm:
D:E(C) —R
Proposition 31 (Bloch) If Y .{fi,9;} € Ko(E). Then
Z/ n(fi,g:) =r (Z{fz‘,gi}) = CZZUP(fz‘) vo(g:) D(P — Q)
i U i i PQ

(¢ is a well-known constant).

7el\{(0,0)}

(w,7) == exp <M>

where

T—T

and U =7 + Zr.
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Figure 31: Néron Model.

If E is an elliptic curve with CM by an imaginary quadratic field of class
number one, the formula with the elliptic dilogarithm is essentially analogous
to the relation of the L-function (see [R]). For example, take

E:y?=2-1

If K =Q(&s) and L(E, s) = L(g, s) where ¢ is a Hecke character, p((«)) =
e(a)a.

LB =5 3 S

aE(’)IX{

if s = 2 we get Zaeof{ % and this can be seen as ) c¢,D(w) with w

6-torsion points.

Note: CM curves have always additive reduction and so we do not have
to worry about the integrality condition.

Integrality: if p is a prime with split multiplicative reduction, then the
Néron model is like in Figure 31.

(17,91 = X (1) vot) B (152
PQ

where N is the number of sides of the Néron model, d is a distance, the
number of sides to pass to go from one point to the other and

3 1
Bs(r) = 2* — 53:2 +352
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is the Bernoulli 3-polynomial.
Back to the construction that started from the Newton polygon (Figure
30), we got {z,y} € Ky(E)). Then, if k is such that Ej is an elliptic curve,

{z,y} € K3(&) © k€ Z
Numerically Boyd proved that
r({2.y)) = m(P) ~ge L'(E0) ke

Idea: if p| denominator of k£ then we should have that Op({x,y}) # 0 and
that would imply no integrality.

We can relate the Néron polygon for p with the Newton polygon. The
dual of the Newton polygon is the Néron polygon.

There is a combinatorial formula for 0p({z,y}) in terms of the polygon,
and it is easy to compute this number and see that it is different from zero.
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