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Blet: A Mathematical Puzzle
F. Rodriguez Villegas, L. Sadun, and J. F. Voloch

1. THE RULES OF BLET. Blet! is a puzzle. One starts with an even number of
coins, laid out in a circle. At first, the coins are laid out with heads and tails alternating
(HTHTHT ... HT). Each turn, you are allowed to take any three consecutive coins that
show tails-heads-tails and flip them over, getting heads-tails-heads. This increases the
total number of heads by one. You may also do the opposite, flipping a heads-tails-
heads pattern to get tails-heads-tails. The object of the game is to get as many heads as
possible. A secondary goal is to reach this maximum in as few moves as possible.

Playing with four, six, or eight coins, it is easy to reach the maximum by being
greedy, always converting THT to HTH and never converting HTH to THT. With ten
coins, you can only get seven heads by being greedy, but there is a way to get eight
heads. Can you find it?

In this article we’re going to spoil your fun by figuring out what the maximum
number of heads is for any starting size, and devising a strategy for reaching that
number. Before reading on, you might want to try solving the ten-coin puzzle (Blet-10)
on your own. (You may prefer using a two-color counter instead of coins. Or you can
use pencil and paper. An electronic version, with twenty-eight “coins” labeled O or 1,
is available at http://www.ma.utexas.edu/users/voloch/blet.html.)

2. MATRICES AND POLYGONAL PATHS. It’s inconvenient to work with circu-
lar sequences, so we will pick a starting point, once and for all. Our configuration is
then a word w in two symbols H and T, such as the example

w=HTHHTTTH. 1

If the (k — 1)st, kth and (k + 1)st letters of a word w are THT, we can convert
them to HT H. We call this a “type-I" move, and denote it /. The reverse procedure,
converting HTH to THT at the corresponding positions in a word, is a “type-II"
move and is denoted I I;. In the electronic version, both are done by clicking on the
kth letter, so we refer to either move as “pushing the kth button.” Note that pushing the
first button changes the first, second, and last letters, whereas pushing the last button
changes the second-to-last, last, and first letters. We will say that two words w and w’
are equivalent if we can obtain one from the other by a succession of type-I and type-II
moves.

For example, the word w in (1) and w' = HHHHTHHT are equivalent by the
following sequence of moves:

HTHHTTTH (starting configuration),

THTHTTTH (L),
HHTHTTHT (Ig),
HHHTHTHT (L),
HHHHTHHT Is).

1'The word “Blet” was coined by Malena Villegas. To the best of our understanding, it has no meaning.
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Given a word w, we denote by £ (w) its H-length, i.e., the number of times that
the letter H appears in w; similarly, we let £7(w) be its T-length. The total length
L(w) = £y (w) + €7 (w) is of course fixed.

With any word w we will associate a path in the space of 2 x 2 matrices. We start

at the identity matrix
1 0
wo=(} 9).

Reading the word w from right to left, we move from each matrix M to the matrix
My M (if the relevant letter is H) or M7 M, where

1 1 1 0
mi=(o 1) = (L 00)
Note that My and M7 are elements of SL,(Z), the space of integer matrices with
determinant one. As a result, every matrix in the path is likewise in SL;(Z).
For an arbitrary word w, let p(w) be the final state matrix. If w = w;w; is a com-
pound word, you should check that p(w) = p(w;)p(w,). In technical language, p is

called a representation into SL,(Z) of the semigroup of all words in H and T. More-
over,

MHMTMH = MTMHMT

(check this!), so applying a Blet move to the middle of w will not change p (w).
For the example w = HTHHTTTH in (1), we have:

1 1
M] == (O 1) - MHa
1 1
M2=(_1 O) MMy,
1 1
M; = (_2 ) MrMrMy,
1 1
M, = (_3 2) =MrMrMr My, (¥))]
-2 1
M5=<_3 2)=MHM MiMrMy,
-5 -3
Mg = (_3 2) =MyMyMi MMMy,
-5 -3
M; = ( > ) =M MyMyMrMrMrMy,

-3
Mg = ( 1 ) MyMrMyMyMr My MMy = p(w).
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To understand the path in SL,(Z), we consider separately the rows of the state
matrix M. Let g denote its first row and p its second row. In terms of p and g, the
actions of H and T are:

.fa—q+p . [974
‘lp—>p ’ ‘\pp—q°

Note that H does not change p, while T does not change g.

By joining each vector g to the next, we obtain a polygonal path in the plane that
we will denote by Q(w). Likewise, by tracking the second row, we obtain a polygonal
path P(w). (A program that draws the pictures given a word is available at http://
www.ma.utexas.edu/users/villegas/nmx.html .) For our running example (1) these look
as follows.

Figure 1. The path QQGHTHHTTTH). Figure 2. The path P(HTHHTTTH).

You may have noticed that not every g-vector in (2) is a vertex of Q(w). When
there are several Hs in succession, g moves in a straight line, in the p-direction. The
edges of Q(w) therefore correspond to runs of one or more consecutive Hs in w, while
the vertices of Q(w), where the direction changes, correspond to runs of one or more
consecutive T's.

We will say that a word w is closed if the last state matrix coincides with the initial
matrix M,. Geometrically, w is closed if both Q and P are closed paths. Algebraically,
w is closed if p(w) is the identity matrix. We will say that w is eventually closed if
some repetition ww - - - w is a closed word. This is equivalent to some power of p(w)
being the identity matrix. You should check that HTHTHTHTHTHT is closed,
and that every starting Blet configuration is eventually closed.

Our first goal is to prove the following.

Theorem 1. If w is an eventually closed word, then

12 5¢ £ £
- <{fy < —, —<€T<5—. A3)

6 6 6 6

Proof. In order to establish (3) we will relate the lengths £, £7, and £ of a word to
geometric data about the path Q. First we relate ¢ to the winding number of Q, using
a formula that was proved in [7] in a somewhat different formulation. Recall that a
closed path y in R? \ {0} has a well-defined winding number m(y), which measures
how many whole turns it makes around the origin in the counterclockwise direction.
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Figure 3. Exterior angles add up to 2rm(Q).

Lemma 2 (Poonen and Rodriguez Villegas). Let w be a closed word of total length ¢,
and let Q@ = Q(w) be its associated path. Then

£ =12m(Q). 4)

Now suppose that w is closed. We consider the vertices vy, . .., v, of Q, numbered
consecutively as we traverse the path. Let 6; be the corresponding exterior angle at the
vertex v, i.e., the change of angle in Q, measured in the counterclockwise direction,
as it comes in and out of v; (see Figure 3).

It is not hard to see that

ZOj = 2mm(Q). 5)
=

Combining (5) with (4), we obtain

A T

Since each exterior angle 6; is strictly less than 7, the number r of such angles is
strictly greater than £/6. Because there are one or more T's associated to each vertex,
the number of T's is greater than £/6. Likewise, the number of H's is at least the number
of edges, which is the same as the number of vertices and is thus greater than £/6.
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So far we have assumed that w is closed. If w is merely eventually closed, then
w" is closed for some n. By the above arguments, the fraction of Hs in w” is strictly
between 1/6 and 5/6. Since the fraction of Hs in w is the same as in w”", the theorem
is proved. |

3. OPTIMAL BLET CONFIGURATIONS. The starting configuration for Blet is
(HT)"?, where n is the number of coins. This is eventually closed, since this pattern
repeated six times is ((HT)®)"/2, and (HT)® is closed. To obtain a bound on the best
possible Blet score, we just have to prove that all configurations that are equivalent to
the starting configuration are also eventually closed.

Recall that a word w is eventually closed if some power of p(w) is the identity.
Since My M7 My = My My Mr, pressing the second, third, ..., or second-to-last but-
ton does not change p(w) at all. Pressing the first button does change p(w), but
only by conjugation. For any subword w;, p(Tw,TH) = Ap(Hw,HT)A™!, where
A = My M. Pressing the last button has a similar effect. In particular, if w and w’
are equivalent words, then p(w’)* is the identity if and only if p(w)* is. As a result, all
legal Blet configurations are eventually closed, and we have proved:

Theorem 3. In a Blet game with n coins, it is impossible to get 5n/6 or more heads.
In particular, when playing Blet with 6k coins you cannot get more than 5k — 1 heads,
with 6k 4 2 coins you cannot get more than 5k + 1 heads, and with 6k + 4 coins you
cannot get more than 5k + 3 heads.

4. A WINNING STRATEGY. Let b(n) be the maximum number of heads that can
be obtained in Blet with n coins, without ever pushing the first or last button. It is easy
to see that b(2) = 1, b(4) = 3, and b(6) = 4.

Theorem 4. The inequality b(n + 6) > b(n) + 5 holds forn = 2,4, ....

We will prove this theorem shortly, but first let us consider the consequences. Start-
ing with the values of b(2), b(4), and b(6), we get lower bounds for b(6n + 2),
b(6n + 4), and b(6n). However, these lower bounds are exactly the same as the upper
bounds given by Theorem 3. Thus the upper bounds are achievable—and achievable
without ever touching the first or last button.

Corollary 5. The best possible score in Blet with n coins is exactly [(5n — 1)/6),
where [x] denotes the greatest integer less than or equal to x.

Proof of Theorem 4. We view the (n + 6)-letter starting configuration as an n-letter
“body” and a six-lettter “tail” HT HT HT . By assumption, we can convert the body
into a word with b(n) Hs and n — b(n) T's, while leaving the tail alone. The resulting
body then either ends with a T', or ends with a T followed by several Hs.

If the body ends with a T, then the entire word ends with THT HT HT . By doing
moves I,.; and I, s, we convert those last seven letters to HT HHHT H. There are
now b(n) + 5 heads, b(n) in the first n — 1 letters and five in the last seven letters.

If the body ends with an H, then we combine a type-I move with a type-II move to
transfer the H to the right of the tail:

HHTHTHT)=HHTHTHT - HTHTTHT - HTHTHTH
=(HTHTHT)H.

We call the combination of moves in (6) a slide. Notice that the slide does not change
the total number of Hs—it just makes an HT HT HT unit swap places with an H.
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If the body ends with a T followed by k Hs, we apply the slide k times to convert
TH¥(HTHTHT) to T(HTHTHT)H*. We can then do two type-I moves to get
HTHHHTH*!. |

As an illustration, here is a solution for Blet-10:

HTHT HTHTHT (starting position with 4-letter body

and 6-letter tail),
HHTH HTHTHT (I3 acts on body), )
HHTHTHTHTH (slide H past tail; I and I,),
HHHTHHHTHH (lyand Ig).

This solution can then be used to solve Blet-16:

HTHTHTHTHT HTHTHT (start with 10-letter body
and 6-letter tail),
HHHTHHHTHHHTHTHT (manipulate body as in (7)),
HHHTHHHTHHTHTHTH (slide one H past tail),
HHHTHHHTHTHTHTHH (slide another H past tail),
HHHTHHHHTHHHTHHH (final two type-I moves).

5. SOLVING BLET ON THE COMPUTER. Since Blet with a fixed number of
coins is a finite game, it can in principle be solved by brute force, with the help of a
computer. You systematically list all possible configurations, and then pick a configu-
ration that has the most heads. Alternatively, you can make moves at random. You’ll
wander through the list of possible configurations and eventually hit every one. When
you stop hitting new configurations, or when you run out of patience, stop and pick
your best to date.

This random-walk approach works for Blet-4 (five possible configurations) and
Blet-6 (eight configurations), but the system gets more complicated quickly. Blet-28
has over eleven million possible configurations, of which only 196 have the maximum
(twenty-three) number of heads. It would take many billions of turns to explore the
whole list by a random walk, and the odds against finding a maximal configuration are
huge.

A better method is called simulated annealing. We used a simplified form of this
method to guess at the maximal number of heads before we actually had the solution.
Before explaining this technique, we explain the much simpler greedy algorithm (that
does not work in this instance!). Starting from the initial position, make a sequence
of moves such that each move increases the number of Hs until it is impossible to
do so. For Blet with twenty-eight coins, the greedy algorithm will never go beyond
twenty-one heads.

In the simplified form of simulated annealing we first choose a number € satisfying
0 < € < 1. We then make a sequence of moves, mostly trying to increase the number
of Hs but allowing moves that decrease the number of Hs “e fraction of the time.”
More precisely, starting from our initial position, we make a sequence of moves as
follows. From the current position, select a random valid move and a random number 4,
where 0 < § < 1, in a process akin to tossing a die. We make the selected valid move
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either if the move will increase the score or if § < €. As described, this procedure may
go on forever. It may also reach a maximum and subsequently leave it. Therefore, it is
necessary to keep track of the largest score encountered and put a limit on the number
of iterations. This algorithm is only practical in certain circumstances, but it does work
very well for Blet.

An € between 0.2 and 0.3 seems to work best for Blet-28. Blet does have many more
local maxima than global maxima, which explains why greedy algorithms won’t work.
For Blet-28 there are 115,929 local maxima out of 11,698,223 positions, of which 196
are global maxima. Our implementation of Blet-28 as a computer game has a button
that will do the simulated annealing for a player.

We should mention that in more sophisticated versions of simulated annealing the €
may depend on the score and on the number of iterations. This process is motivated by
the metallurgical procedure of annealing, in which a metal is initially heated and then
left to cool slowly so as to achieve a low-energy position. The parameter € corresponds
to the temperature of the metal, with the greedy algorithm € = O corresponding to
freezing the system at absolute zero temperature. The score corresponds to the energy
of the metal, and the number of iterations represents time. For more about simulated
annealing, see [6] for the original reference, [3] for an interesting application, [1] for
general theory, and [5] for an analysis of the efficiency of holding € fixed.

We now describe in more detail how we counted the total number of positions and
obtained some other data. We assume the reader is familiar with some basic notions
of graph theory. Blet, like many similar puzzles, can be modeled by graphs, as fol-
lows. Let us say we are playing Blet with n coins and initial position (HT)"/?. We
can construct a graph whose vertices are all possible positions we can reach from the
initial position and whose edges link positions that are one move apart. We proceed
to show that the number of vertices grows exponentially. Let B, denote the number of
configurations of Blet-n.

Theorem 6. Forn > 2 it is true that 2"/*> < B, < 2".

Proof. The upper bound is easy. The set of valid Blet-n configurations is a subset of
the set of words of length n in the two letters H and T. There are exactly 2" such
words.

We prove the lower bound by modeling Blet-n within Blet-(n + 6), and thereby
associating eight Blet-(n + 6) configurations to each Blet-n configuration. Start with
the usual starting point (HT)"+9/2, which we view as (HT)"/>(HT)3. We push the
first n buttons freely, but whenever we push button n — 1 we also push n + 2 and
n + 5; whenever we push button n we also push n + 3 and n + 6; and whenever we
push button 1 we also push n + 1 and n + 4. In this way, the first n letters will always
be a valid Blet-n configuration, while the last six letters will eitherbe THT HT H or
HTHT HT, depending on whether the nth letter is an H or a 7. You should check that
pushing buttons n, n + 3, and n + 6 is legal in Blet-(n + 6) precisely when pushing
button 7 is legal in Blet-n, and similarly for the other combinations.

After achieving a desired Blet-n position for the first n letters, we still have the
freedom to vary the last six letters. By pressing combinations of buttons n + 2, n 4 3,
n+4, and n + 5, we can get the final six letters to take any of the eight forms:
HTHTHT, THTTHT, HHTHHT, HTTHTT, THTHTH, HTHHTH,
TTHTTH, THHTHH. Thus we associate eight Blet-(n + 6) configurations to
every Blet-n configuration, so B,,¢ > 8B,.

Since the lower bound B, > 2*/2 holds for B; = 5, B¢ = 8, and Bg = 37, it then
follows by induction that it holds for all n. |
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We do not know the exact number of vertices in general, but here is some data for
small n:

TABLE 1.

n  #vertices # global maxima
4 5 2
6 8 3
8 37 2
10 176 5
12 196 4
14 1471 7
16 6885 16
18 5948 9
20 60460 25
22 280600 55
24 199316 24
26 2533987 91
28 11698223 196
30 7080928 70

It appears from the data that the growth rate is considerably closer to our upper bound
than to our lower bound.

The data in Table 1 was obtained by constructing a spanning tree for the graph of
Blet. A tree is a connected graph with no circuits. A spanning tree of a graph is a
subgraph that contains all vertices of the graph and, moreover, is a tree. We used a
standard spanning tree algorithm, called depth-first, which goes as follows. We start
with the initial position and keep track of all visited positions, together with the moves
that first brought us to them. If we are in a certain position, we look for a move that
will take us to a new position. If one exists, we move to it and add the new position
to our set of visited positions; otherwise we backtrack from our current position us-
ing the recorded move that first brought us there, unless the position is the initial one.
In the case of the initial position, if we return to it and cannot move to a new position,
we terminate the algorithm. The reader can check that this algorithm always terminates
in a spanning tree. The referee suggested dynamic programming as an alternative ap-
proach. A suitable reference for these various algorithms is [4].

6. COUNTING AND DESCRIBING THE MAXIMA. We have found the maxi-
mum score for Blet-n, and we have exhibited a method for achieving this score. For
instance, we have constructed an optimal configuration, namely H3T H*T H>T H?3, for
Blet-16. Is this the only optimal configuration, or are there others? What do they look
like?

Since the original Blet-16 configuration, (H T)8, had rotational symmetry, rotations
of H3T H*T H*T H? by even numbers of steps (e.g., HT H*T H*T H?) are achievable
and optimal. All such configurations have a T somewhere, followed by four Hs,a T,
six Hs, a T, and three H's. In general, we will denote by (s;, .. ., s;) any configuration
that is a cyclic permutation of T H*tT H*2 - - - T H*%. The configuration (4, 6, 3) is opti-
mal for Blet-16. By reflectional symmetry, (6, 4, 3) is also optimal and achievable. We
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will soon see why these are the only optimal configurations for Blet-16. Out of 6,885
possible Blet-16 configurations, only sixteen are global maxima.

From the proofs of Theorems 4 and 6, we obtain a procedure that yields optimal
configurations for Blet-(n + 6) from optimal configurations for Blet-n. We simulate
Blet-n on Blet-(n + 6), as in the proof of Theorem 4. Once an optimal configuration
(s1, . .., S¢) has been obtained for Blet-n, we use slide moves to bringthe HTHTHT
tail adjacent to one of the T's, say the one between H*! and H*2. The single T from
Blet-n is thereby replaced with a pattern THT HT HT for Blet-(n + 6). Two type-1
moves then convert that pattern to HT HH HT H . This is a new optimal configuration
for Blet-(n + 6), in which the runs of length s; and s, have been lengthened by one,
and a run of length 3 has been inserted in between. In other words, we have proved:

Theorem 7. If (51, 52, . .., 5¢) is an optimal configuration for Blet-n, then the config-
uration (s; +1,3,5, + 1, 53, ..., 8) is optimal for Blet-(n + 6).

For example, (3, 5) is an optimal configuration for Blet-10, so (4, 3, 6) is an optimal
configuration for Blet-16. But (5, 3) = (3, 5), so (6, 3, 4) is also an optimal configura-
tion for Blet-16. Similarly, (4, 4, 3) = (3, 4,4) = (4, 3, 4) is an optimal configuration
for Blet-14, so (5, 3,5, 3), (4,3,5,4), and (5, 3, 4, 4) are optimal configurations for
Blet-20.

We can actually say a little more.

Theorem 8. Every optimal Blet configuration is obtainable recursively by the proce-
dure indicated in Theorem 7.

Proof. We will prove a slightly stronger statement, namely, that every eventually-
closed word of length n in H and T (with n even) that achieves equality in the upper
bounds of Theorem 3 is obtained in this way. As a corollary, this shows that every such
word is equivalent either to (HT)"? or to (T H)"/>.

Let w be such a word, and suppose that n > 10. We will show that: (1) the T's in
w are isolated, so w takes the form (sy, .. ., s¢) for some positive integers sy, .. ., S;
(2) none of the s;s are equal to one or two; (3) at least one of the s;s is equal to three;
(4) w is obtained by our procedure from an eventually-closed word of length n — 6
that saturates the upper bounds of Theorem 3. By induction, w is then recursively
constructed from an optimal eventually-closed word of length 4, 6, or 8. Since all such
words are easily seen to be Blet words (up to cyclic permutation), the proof will be
complete.

Step 1. Theorem 1 gives a lower bound on the number of vertices in the polygonal
path Q. However, each vertex corresponds to a string of T's. To minimize the number
of Ts (i.e., to maximize the number of Hs), we must place exactly one T in each
string. In other words, the T's must be isolated.

Step 2. If s; were equal to one, we would have a string T HT somewhere, which we
could convert to HT H, thereby increasing the number of H's. This contradicts the fact
that w is optimal. Thus s; cannot be one. Now suppose that s; =2 and n > 12, so w
contains at least three T's. If s; = 2, there exists the pattern HTHHTH somewhere in w.
By pushing the fifth button of this string, we convert it to HTHTHT. We then do slide
moves to bring this adjacent to a third 7', and finally do two type-/ moves to convert
THTHTHT to HTHHHT H. The net result of all these moves is to increase the
number of Hs by one, contradicting the optimality of w. The only remaining case is
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s; = 2 and n = 10, i.e., that the pattern is (2, 6). However, no power of
2 6y _ 1 4
p(TH°TH®) = (0 1)

is the identity, so words of the form (2, 6) are not eventually closed.
Step 3 requires a lemma:

Lemma 9. Suppose that s,, ..., s, are integers, none less than four. Then the matrix
po(TH'T H*2 - - - T H) is not the identity.

Proof. We explicitly compute

1 M
-1 1-—s

=) =) =6

These matrices satisfy the relations

p(TH") = Mr My, = ( ) =@ —HX+Y +1],

where

Y?=0, X’=X, XYX=X, YXY=Y.

If all the s;s are equal to four, then we have p((T H*)*) = (—=1)*(I + kY), which is
not the identity. If at least one of the s;s is greater than four, but none is less than four,
then the coefficient of X in the expansion ]'[5;1 [(s; —4)X + Y + I]is strictly positive,
so (—1)* ]_[if:1 [(s; —4)X + Y + I] cannot be the identity. This proves the lemma. W

Step 3 of proof of theorem. If w has the form (sy, ..., s;) with each s5; > 4, then the
lemma states that a certain cyclic permutation of w cannot be closed. But that implies
that w cannot be closed. Similarly, applying the lemma to powers of w shows that w
cannot be eventually closed.

Step 4. By steps 1, 2, and 3, each optimal eventually closed word is of the form
(s1, ..., 8¢) with each of the s;s at least three, and at least one of the s;s equal to three.
Without loss of generality, we can assume that w is of the form (s, 3, 53, ..., ).
The word w therefore begins with T H*'\"'HT HH HT H H%3~!, which we convert (by
two type-I1 moves) to TH ' 'THTHTHTH*~'. Now p(HTHTHT) = -1, so
the word w’ of length n — 6 gotten by replacing THT HT HT with T is eventually
closed, and it has five fewer H's than the original optimal word w. Thus w’ is an opti-
mal eventually closed word, and w is obtained from w’ by the procedure of Theorem 7.

Conclusion of proof. Since steps 1-4 apply to all » > 10, any optimal eventually-
closed word can be obtained by repeated application of the procedure of Theorem 7
to an optimal eventually-closed word of length less than 10, i.e., of length 4, 6, or 8.
Up to cyclic permutation, there is only one word of length 4 with only one T, namely
T H3, or (3). Similarly, there is only one word of length 6 with two isolated T's and
no isolated Hs, up to cyclic permutation, namely T H>T H?, or (2,2). There are two
words of length 8, namely (2, 4) and (3, 3), but (2, 4) is not eventually closed. Thus the
only optimal eventually-closed words of length less than 10 are (3), (2, 2), and (3, 3).
All of these are valid Blet configurations, and all longer optimal eventually-closed
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words are obtained from these by the procedure of Theorem 7. In particular, all optimal
eventually-closed words are valid Blet configurations, up to cyclic permutation. This
means that they are Blet-equivalent either to the original Blet configuration (HT)"/?
or to the only other cyclic permutation of this, (T H)"/2. [

7. FURTHER PROBLEMS. First, as a warm-up, the reader might try the following
problem. It is easy to see that (H T)"/? and (T H)"/? are equivalent when n is divisible
by six—just push every third button. Prove that, conversely, these two configurations
are equivalent only when 7 is divisible by six.

In this paper we showed how to get the maximum possible score in Blet, but we
didn’t address the question of speed. How many steps are needed to solve Blet-n?
Can some maximal configurations be reached quicker than others? Which configura-
tions (maximal or not) are farthest from the starting configuration? We don’t know the
answers to these questions.

Another open problem involves the number of possible Blet configurations. We
know there are at least 2*/? and at most 2", and we know the precise number for some
small values of n, but we don’t understand this number in general.

Finally, one can play a different game with the Blet rules, starting at a random
achievable configuration and trying to go back to (HT)"/? (rather like solving a Ru-
bik’s cube).

In considering some of these questions the connection, which we have not yet men-
tioned, between the basic relation HT H = T HT and the braid group on three strands
is likely to be useful (see, for example, Burckel [2]).
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