
Vol. 98, No. 3 DUKE MATHEMATICAL JOURNAL © 1999

CENTRAL VALUES OF HECKEL-FUNCTIONS
OF CM NUMBER FIELDS

FERNANDO RODRIGUEZ VILLEGASand TONGHAI YANG

0. Introduction. It is well known that the zeta function of CM (complex multi-
plication) abelian varieties can be given in terms ofL-functions of associated Hecke
characters. In this paper, we prove a formula expressing the central special value of
theL-function of certain Hecke characters in terms of theta functions. The formula
easily implies that the central value is nonnegative and yields a criterion for its pos-
itivity. Combining this criterion with the work of Arthaud and Rubin, we show that
certain CM elliptic curves have Mordell-Weil rank zero over their field of definition.
Let F be a totally real number field of degreet and letµ be a quadratic Hecke

character ofF of conductorf such that(2�F , f) = 1. Given a CM extensionE of
F , we consider the twistχ = χcanµ̃ of µ by a “canonical” Hecke characterχcan of
E (see Section 2), wherẽµ = µ◦NE/F , as well as its odd powersχ2k+1, k ∈ Z≥0.
Consider the following condition:

All units of E are real and every prime ofF dividing 2f is split inE/F .(∗)
Our main result is the following.

Theorem 0.1 (Sketch of Theorem 2.5). Assume thatF has ideal class number1
and(−1)ktµ∞(−1)= 1, whereµ∞ : (F⊗R)∗ −→ C∗ is the infinite part ofµ. Then
there is an explicit theta functionθµ,k overF , depending only onµ andk, such that
for every CM quadratic extensionE of F satisfying the condition (∗), the central
L-value

L
(
k+1,χ2k+1)= κ

∣∣∣∣∣∣
∑

C∈CL(E)

θµ,k(A)

χ2k+1(Ā)

∣∣∣∣∣∣
2

.(0.1)

Here,κ is an explicit positive number,A ∈ C−1 is a primitive ideal relatively prime
to 2f, andθµ,k(A) is essentially the value of a theta functionθµ,k at a CM point inE
associated toA2.

We emphasize thatθµ,k is independentof the CM fieldE, which is one of the
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reasons we viewχ as a twist ofµ by a canonical Hecke character ofE. We also
remark that under the hypothesis of the theorem, the root number ofχ2k+1 is 1.
As a corollary to the theorem, we deduce that under certain conditions on the ideal

class group ofE, the centralL-value vanishes if and only if all the termsθµ,k(A) in
the theorem vanish (Theorem 2.6). Using this criterion, we obtain, for example, the
following result.
For a primep ≡ 7mod8 and a squarefree integerd ≡ 1mod4, letA(p)d be the

CM elliptic curve with CM byE = Q(
√−p), studied by Gross in his thesis (see

[Gr]). Let h be the class number ofE, andχ be one of theh Hecke characters ofE
associated toA(p)d . Then we have the following theorem.

Theorem 0.2. Assume that every prime divisor ofd splits inE. There is a constant
M depending only onk such that ifp > Md4, sign(d) = (−1)k, and (2k+1,h) =
1, then the central L-valueL(k+ 1,χ2k+1) > 0. For k = 0,1, we may takeM =
.081, .206, respectively.

Combining this with an unpublished result of Arthaud, later generalized by Rubin
[Ru], we obtain the following corollary.

Corollary 0.3. Assumed ≡ 1mod4, d > 0, and every prime factor ofd is split
in E. Then for allp > .081d4, the elliptic curveA(p)d has Mordell-Weil rank zero
over its field of definition.

We made no effort to optimize the constantM in 0.2, and our result can surely be
improved. The primep can be replaced by a positive squarefree integerD ≡ 7mod8.
It would certainly be interesting to lower the power ofd in the statement. We should
also point out that the hypothesis(2k+ 1,h) = 1 in 0.2 is crucial to our proof (it
guarantees that there is only one Galois orbit of Hecke characters); and indeed, as
pointed out in [RV2],L(χ3,2)= 0 whenp = 59 andd = 1.
The Hecke characters considered here and their associated CM abelian varieties

were studied by Shimura (see [S, Section 7.8], [S2], and [S3]), who also discussed
their special values. The terminology “canonical” is due to Rohrlich (see [Roh2],
[Roh3], [Roh4], and Section 2).
The main formula of this paper has its root in [RV] (and its sequel [RV2], [RVZ],

and [RVZ2]) and is a variation of [Y, Theorem 0.7].
Special cases of Theorem 0.2 have been previously proven by Montgomery and

Rohrlich [MRoh], [Roh2], [Roh3] and the first author [RV2]. Corollary 0.3was proved
by Gross [Gr], using descent theory, in the cased = 1. The split condition in Theorem
0.2 and Corollary 0.3 is not essential and can be dropped. We refer to [Y4] for details.
By a result of Rogawski ([Ro]; see also [Y]), the nonvanishing of the centralL-

value is equivalent to the nonvanishing of certain global theta lifting.
The idea to derive the main formula(0.1) is as follows. We have the formula of

[Y] expressing the centralL-value as the absolute square of some theta integral on
a unitary group of one variable. The task is simply to compute the theta integral. In
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Section 1, we break the integral into local integrals and compute these in the split case
and the infinite case. For a finite place ofF that does not split inE, the calculation
amounts to finding an eigenfunction of the Weil representation of the unitary group
mentioned above. A general explicit construction of such eigenfunctions is given in
[Y3], [Y4]. For the characters considered in this paper, the eigenfunctions we need
turn out to be very simple (Lemmas 2.2 and 2.3). Putting things together, we find that
the theta integral is the sum of the special values of certain theta series at CM points in
E (Theorem 2.4). Now assume thatF has ideal class number 1. Then the theta series
involved become the same and, independent of the CM fieldsE, we get the main
formula. To obtain the nonvanishing results, we use a theorem of Shimura concerning
special values ofL-functions of conjugate Hecke characters (the trick goes back to
Rohrlich; see [Roh2], [Roh3], [MRoh], [RV2]). In Section 3, we specialize to the
caseF =Q and obtain a more explicit form of the main formula (Theorem 3.2) and
the results mentioned above.

Acknowledgments.T. H. Yang would like to thank S. Kudla and D. Rohrlich for
their advice and suggestions. He also thanks the Institute for Advanced Study for its
hospitality and financial support during the preparation of this paper in 1996. Finally,
we thank the referee and M. Stoll for their careful reading of the manuscript and for
their valuable suggestions and corrections.

Notation. In this paper,F is always a totally real number field, andE is always a
“generic” quadratic CM extension ofF in the sense of Rohrlich [Roh4, p. 519]; that
is, �∗E = �∗F , and the natural map CL(F )−→ CL(E) is injective. We further assume
that every prime ofF above 2 is split inE to avoid technical complications at 2. We
fix a “canonical” additive characterψ =∏

ψv of FA/F as follows:

ψv(x)=
{
e2πix if v is real,

e−2πiλ(x) if v | p is finite,(0.2)

whereλ : Fv
tr−→Qp −→Qp/Zp ↪→Q/Z. Of course, every additive character of

FA/F has the formaψ : x �→ ψ(ax) for somea ∈ F . LetψE = ψ ◦ tr and letn(ψv)

be the local conductor ofψv. OnFv or Ev, we take the Haar measure self-dual with
respect toψv or ψEv , respectively.
For the sake of simplicity, we assume that there is aδ ∈ E∗ with#= δ2 ∈ F ∗ such

that

ordv #=
{
1 if v is ramified inE/F,

0 if v is unramified inE/F .
(0.3)

Such aδ always exists ifF has ideal class number 1. (Recall that we have assumed
that every prime factor of 2 inF splits inE.)
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Let E1 be the norm-1 subgroup ofE. Given a characterη of [E1] = E1\E1
A, let

η̃ be the Hecke character ofE given by η̃(z) = η(z/z̄). On E1
v , we take the Haar

measure such that meas(E1
v) = 1 if v is nonsplit and meas(�∗v) = 1 if v is split in

E/F . In the latter case, we have identifiedE1
v with F ∗v via (z,z−1) �→ z. OnE1

A, we
take the Haar measure such that meas([E1])= 1. Then the Tamagawa number of the
algebraic groupE1 is characterized by the identity∫

[E1]
f (g)dg = Tam(

E1)∏∫
E1v

fv(g)dg(0.4)

for every Schwartz functionf =∏
fv ∈ S([E1]).

Let χ be a fixed Hecke character ofE whose restriction toF ∗A is the quadratic
Hecke characterε = εE/F of F ∗A associated toE/F by class field theory. Then every
such Hecke character ofE is of the formχη̃ for some characterη of [E1]. If the
global root number ofχη̃ is 1, there isα ∈ F ∗ (unique up to norm fromE∗) such that

∏
w|v

ε

(
1

2
,
(
χη̃

)
w
,
1

2
ψEw

)(
χη̃

)
w
(δ)= εv(α).(0.5)

Here, the product takes over placesw of E abovev, andε(1/2, (χη̃)w,(1/2)ψEw)

are Tate’s local root numbers. We write, in short,

ε

(
1

2
,
(
χη̃

)
v
,
1

2
ψEv

)
=

∏
w|v

ε

(
1

2
,
(
χη̃

)
w
,
1

2
ψEw

)
.

For a datum(χ,η,α) satisfying(0.5), we define

Ssp= {v : E/F is split atv},
Sin = {v �∞ : E/F is inert atv},
Sra= {v �∞ : E/F is ramified atv},
Sχη̃ = {v �∞ : χη̃ is ramified atv}.

WhenE/F is split at a placev of F , we choose a placew of E abovev and write
δ = (xv,−xv) ∈ E∗v = E∗w⊕E∗̄w = (F ∗v )2. We define

nv =



n
(
x3vαψv

)
if v ∈ Ssp,[

n
(
(δα/4)ψEv

)+1
2

]
if v ∈ Sin∪Sra.

(0.6)

Here[x] means the integral part of a real numberx. Forv ∈ Sχη̃, we definekv to be
the smallest integerk such that bothχw andη̃w are trivial on 1+πk

w�w, wherew is
a place ofE abovev. For other finite placesv, we takekv = 0. Let, be a CM type
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of E, and identify infinite places ofF with ,. Forv = σ ∈,, there is an integermσ

such that (
χη̃

)
σ
(z)=

( |z|
z

)2mσ+1
.

We define

kσ =mσ sign
(
Im

(
σ(δα)

))− 1−sign
(
Im

(
σ(δα)

))
2

.(0.7)

The condition(0.5) implies thatkσ ≥ 0. In particular, ifmσ ≥ 0, then Im(σ (δα)) > 0
andkσ =mσ . For technical reasons, we assume throughout this paper (one can always
choseα to satisfy both(0.5) and(0.8)) that

n

(
x3vα

4
ψv

)
≤ 0 for everyv ∈ Ssp; that is,nv ≤−2ordv 2.(0.8)

Finally, we normalize the classical Hermite functions as follows: Let

φ0= e−πx2 ∈ S(R), φk = 1

2k

(
x− 1

2π

d

dx

)k

φ0(x)(0.9)

be thekth Hermite function fork ≥ 0. Then

ikφ̂k = φk,(0.10)

where

φ̂(x)=
∫
R
φ(y)e−2πixy dy

is the Fourier transform ofφ. One has

〈
φk,φk

〉= 1√
2

k!
(4π)k

.(0.11)

The following properties ofφk are well known:

φk+1= xφk− k

4π
φk−1, d

dx
φk = kφk−1−2πxφk.(0.12)

Notice that there is a unique polynomialHk(x) of degreek (the Hermite polynomials)
such that

φk(x)=Hk(x)e
−πx2.(0.13)

It is easy to check thatH0= 1 andH1= x. In general,Hk has the same parity ask.
Given positive numbersa andb > 0, we define for the purpose of this paper
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φk
a,b(x)= φk

(√
a3bx

)
.(0.14)

Note

〈
φk
a,b,φ

k
a,b

〉= 1√
2a3b

k!
(4π)k

.(0.15)

1. General setting. For the first two lemmas, we change the notation temporarily.
Let F be ap-adic field with the ring of integers�, and letπ be a uniformizer ofF .
Let ψ be an arbitrary nontrivial additive character ofF , and letn = n(ψ) be its
conductor, by which we mean the smallest integern such thatψ |πn� = 1. Soψ is
unramified if and only ifn ≤ 0. Letχ be a character ofF ∗ and letm = n(χ) be its
conductor, that is, the smallest integerm such thatχ is trivial on 1+πm�. Define

I (ψ,x)=meas(�)−1
∫

�
ψ(xy)ψ

(
y2

)
dy(1.1)

to be the Fourier transform of the functionψ(x2)char(�)(x) with respect toψ . We
also define

I (ψ,χ)=meas(�∗)−1
∫

�∗
χ(x)ψ(x)d∗x.(1.2)

Both I (ψ,x) andI (ψ,χ) are independent of the choice of the Haar measure onF

or F ∗, respectively.

Lemma 1.1. Let the notation be as above. Then the following hold.
(1) If p �= 2, then

I (ψ,x)=


char(πn�)(x) if n≤ 0,
q−(n/2)ψ

(
− 1
4
x2

)
γ n char(�)(x) if n > 0.

Here

γ = γ
(
πn−1ψ

)=
∑

a∈(�/π�) ψ
(
πn−1a2

)
√
q

is the Weil index of the character̃ψ of �/π� induced byπn−1ψ (see [We], [RR,
Appendix]).
(2) If p = 2 andn(ψ)≤ 0, then

I (ψ,x)= char(πn�)(x).

Lemma 1.2. Assume that eitherχ or ψ is ramified. One has

I (ψ,χ)=
{
0 if n �=m,

q−n
(
1−q−1

)−1
G(ψ,χ) if n=m.
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Here
G(ψ,χ)=

∑
a∈(�/πn�)∗

ψ(a)χ(a)

is the Gauss sum ofχ andψ .

Now we switch back to the notation of the introduction. First we have the following
proposition.

Proposition 1.3. Let f = ∏
fv be an integrable function on[E1] such that

fv(−x)= fv(x) wheneverE/F is ramified atv. LetCL(E) be the ideal class group.
Let CL−(E) = CL(E)/CL(F ) and leth− = #CL−(E) be the relative ideal class
number ofE/F . Then ∫

[E1]
f (g)dg = 1

h−
∑

C∈CL−(E)

IC(f ),(1.3)

where
IC(f )=

∏
Iv,C(f ),

and

Iv,C(f )=
{∫

E1v
f (g)dg if v is nonsplit,∫

�∗v f
(
gawa

−1
w̄

)
dg if v = ww̄ is split.

(1.4)

Herea = (aw) ∈ E∗A corresponds to an ideal inC−1, and the Haar measures are nor-
malized as in the introduction. In particular, the Tamagawa number ofE1, Tam(E1),
equals2s/h−, wheres is the number of finite places ofF ramified inE/F .

Notice thatIv,C(f ) is independent ofC whenv is nonsplit.

Proof. Let

UE =
∏
v�∞

�∗Ev
×

∏
σ∈,

C∗,

UF =
∏
v�∞

�∗v×
∏
σ∈,

R∗,

and letU1= λ(UE) be a subgroup ofE1(A), whereλ(z)= z/z̄. SinceE is generic,
the natural map CL(F ) −→ CL(E) is injective andE∗ ∩F ∗A = F ∗. So one has a
commutative diagram of exact sequences

1 �� UF

��

�� UE

��

�� U1

��

�� 1

1 �� [F ∗] �� [E∗] ��
[
E1

]
�� 1.
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By the snake lemma, one obtains the exact sequence

1→ �∗F → �∗E → E1∩U1→ F ∗UF \F ∗A→ E∗UE\E∗A→ E1U1\E1
A→ 1.

SinceE is generic,�∗F = �∗E and F ∗UF \F ∗A ↪→ E∗UE\E∗A. So E1U1\E1
A
∼=

CL−(E), andE1∩U1 = 1. Therefore
∐

C∈CL−(E) U
1a−1C āC is a fundamental do-

main for [E1], whereaC ∈ E∗A corresponds to an ideal inC
−1. Notice that

U1=
∏
v∈Sra

λ
(
�∗Ev

)× ∏
v∈Sin∪,

E1
v×

∏
v∈Ssp

�∗v,

andE1
v = {±1}×λ(�∗Ev

) whenv ∈ Sra. Sincefv(−x) = fv(x) for v ∈ Sra, one has
by (0.4),∫

[E1]
f (g)dg =

∑
C∈CL−(E)

∫
U1a−1C āC

f (g)dg

=
∑

Tam
(
E1)2−s ∏

v /∈Ssp

∫
E1v

fv(g)dg
∏
v∈Ssp

∫
�∗va−1w aw̄

fv(g)dg

= Tam
(
E1

)
2s

∑
IC(f ).

Plugging inf = 1, one gets
1= Tam

(
E1

)
2s

h−.

Recall that given a datum(χ,α,ψ), whereχ is a Hecke character ofE whose
restriction onF ∗A is εE/F , ψ is a nontrivial additive character ofFA, andα ∈ F ∗,
one has a Weil representationωα,χ = ⊗ωα,χ,v of G(A) on the spaceS(FA) of
Schwartz functions, whereG = U(1) = E1 is the norm-1 group ofE/F (refer to
[HKS]; see also [Y]). It depends on the choice ofχ , α, andψ . When a characterη
of [E1] = E1\E1

A satisfies(0.5), there is a functionφη̄ =
∏

φη̄v ∈ S(FA), given in
[Y, Theorem 2.15] (φη̄v is an eigenfunction of(Gv,ωv,χ ) with eigencharacter̄ηv for
a nonsplit placev), such that

cTam
(
E1) L

(
1
2,χη̃

)
L

(
1,εE/F

) = 2∣∣θφη̄ (η)(1)∣∣2.(1.5)

Here

c =
∏

v∈Sin∩Sχη̃

(
1+q−1v

)−1 ∏
v∈Ssp∩Sχη̃

(
1−q−1v

)−2
q−kvv(1.6)
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and

θφ(η)(1)=
∫
[G]

∑
x∈F

ωα,χ (g)φ(x)η(g)dg.(1.7)

Applying Proposition 1.3 and the analytic formula forL(1,εE/F ), one has the
following corollary.

Corollary 1.4. Let the notation be as above. Lett = [F :Q], and lets be the
number of prime ideals ofF ramified inE/F . LetDF be the absolute discriminant
of F . Then

L

(
1

2
,χη̃

)
= 21−sπ t

√
DF

c
√
DE

∣∣∣∣∣∣
∑

C∈CL−(E)

IC(η)

∣∣∣∣∣∣
2

.(1.8)

Here

IC(η)=
∑
x∈F

∏
v

Iv,C(x)(1.9)

and

Iv,C(x)=
{∫

E1v
ωα,χ,v(g)φη̄(x)ηv(g)dg if v is nonsplit,∫

�∗v ωα,χ,v(gawa
−1
w̄ )φη̄(x)ηv(g)dg if v = ww̄ is split.

(1.10)

Herea = (aw) ∈ E∗A corresponds to an idealA ∈ C−1.

Let CLra= Ira/Pra be the “ramified” ideal class group ofE, whereIra is the group
of fractional ideals ofE whose prime factors are all ramified inE/F , andPra is
the subgroup ofIra of principal ideals. It is easy to check that CLra is a subgroup
of CL(E). Let CL−ra be its image in CL−. The following corollary is an immediate
consequence of Proposition 1.3.

Corollary 1.5. Let the notation and assumptions be as in Proposition 1.3. For
C ∈ CL−(E) andC′ ∈ CL−ra, one has

ICC′(f )= IC(f ).

Corollary 1.6. Let the notation and assumptions be as in Corollary 1.4. Letξ̃

be an ideal class character ofE trivial on CL(F )CLra, so that there is a character
ξ of [E1] such thatξ̃ (z)= ξ(z/z̄). Then(χ,ξη,α) also satisfies (0.5), and

IC(ξη)= ξ̃ (C)−1IC(η).

Proof. Wefirst verify that̃ξv = 1 for every nonsplit placev ofF . It is true at infinite
places sincẽξ is of finite order. Whenv is finite and nonsplit,̃ξv is unramified. By
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assumption,̃ξv(πEv ) = ξ̃ (Pv) = 1, whereπEv is a uniformizer ofEv andPv is the
corresponding prime ideal ofE. So ξ̃v = 1. This proves the first claim and

Iv,C(ξη,x)= Iv,C(η,x)

for a nonsplit placev of F . Here we writeIv,C(η,x) for Iv,C(x) to indicate its
dependence onη. Whenv is split inE/F , one still hasφξη = φη̄ sinceξ is unramified
at v (see [Y, Section 2.2]). Applying (1.10), one gets

Iv,C(ξη,x)= ξv
(
awa

−1
w̄

)
Iv,C(η,x).

Taking the product overv and using the assumption thatξ̃ is trivial on CL(F )CLra,
one proves the corollary.

For each ideal classC ∈ CL−(E), we choose a primitive idealA (no factor from
F ) of E in C−1 relatively prime to 2αδF, whereF is the conductor ofχη̃. Let

A=P
e1
1 P

e2
2 · · ·Per

r

be the prime decomposition ofA; thenpi = NE/FPi is a prime ofF split in E/F .
Let vi = wiw̄i be the place ofF associated topi . We may assumēwi corresponds to
Pi . Let πi be a uniformizer ofFvi , and definea = (aw) ∈ E∗A via

aw =
{
π
ei
i ifw = w̄i,

1 otherwise.
(1.11)

Proposition 1.7. With the notation and assumptions as above, one has

Iv,C(x)=




φη̄v (x) if v ∈ Sra∪Sin,∣∣2σ (
δ3α

)∣∣1/4
√
(4π)kσ

kσ ! φ
kσ
|σ(δ)|,|σ(α)|

(
σ(x)

)
if v = σ ∈,,

1

χ ′η̃(P̄i
ei
)
ψv

(
1

2
x3vαx

2
)
char

(
π
−ei
i �v

)
(x) if v = vi,

q
−(kv/2)+(nv/2)−(n(ψv)/4)
v ψv

(
1

2
x3vαx

2
)

×I(x3vαxψv,(χη)
−1
v

)
if v ∈ Ssp∩Sχη̃,

q
(nv/2)−(n(ψv)/4)
v ψv

(
1

2
x3vαx

2
)
I

(
x3vα

4
ψv,4x

)
otherwise,

(1.12)

whereχ ′ = χ | |−(1/2)A , andφη̄v is a unitary eigenfunction of(Gv,ωα,χ,v) with eigen-
characterη̄v. The numbersnv, kv, andkσ were defined in the introduction.
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Proof. Whenv is nonsplit,φη̄v is an eigenfunction ofωα,χ,v with eigencharacter̄ηv
by construction (see [Y, Theorem 2.15]). SoIv,C(x)= φη̄v (x). Explicit formulae for
φη̄v are given in [Y4, Section 1] for finitev and forσ ∈, with Im(σ (δ)) > 0. Lemma
1.1 in [Y4] is still valid when Imσ(δ) < 0 if we replace sign(α) by sign(Im(σ (δα))).
Whenv is split, we verify the casev ∈ Sχη̃∩Ssp and leave other cases to the reader.
By [Y, (2.30)], one has

φη̄v =meas
(
πkv
v �v

)−(1/2)
ρ
(
char

(
1+πkv

v �v

))
,

whereρ is an isometry defined by [Y,(2.28)] (|x30α|1/3 should be|x30α|1/2 in the
formula). Letωχ,v be the “natural” realization of the Weil representation ofGv on
S(Fv) given by [Y, Corollary 2.10], where the subscriptv is omitted. Sinceρ is an
isometry, one has forg ∈ �∗v,

ωα,χ,v(g)φη̄v (x)=meas
(
πkv
v �v

)−(1/2)
ρ
(
ωχ,v(g)char

(
1+πkv

v �v

))
(x).

Applying [Y, Corollary 2.10] and [Y, (2.28)], one has then

ωα,χ,v(g)φη̄v (x)=meas
(
πkv
v �v

)−(1/2)
χv(g)ρ

(
char

(
g−1+πkv

v �v

))
(x)

= q−(kv/2)+(nv/2)−(n(ψv)/4)
v χv(g)ψv

(
1

2
x3vαx

2
)
ψv

(
x3vαxg

−1)
·char(πnv−kv

v �v

)
(x).

Here we have used the fact meas(�v)= q
n(ψv)/2
v and the assumptionn((x3vα/4)ψv)≤

0, specified in (0.8) So,

Iv,C(x)= q−(kv/2)+(nv/2)−(n(ψv)/4)
v ψv

(
1

2
x3vαx

2
)
I
(
x3vαxψv,(χη)

−1
v

)
.

2. The main formula. According to Rohrlich [Roh4, p. 518], a canonical Hecke
character ofE is a Hecke characterχcan satisfying the three following conditions for
some CM type, of E:
(i) χcan(Ā)= χcan(A) for idealsA prime to the conductor ofχcan.
(ii) χcan(α�E)=±α, for α ∈ E∗ prime to the conductor ofχcan.
(iii) The conductor ofχcan is divisible only by primes ofE that are ramified overF .
WhenE is generic and every prime ofF dividing 2 is split inE, which we assume

throughout this paper, canonical characters ofE exist (see [Roh4]). They differ from
each other by an ideal class character ofE trivial on the ideal class group ofF . The
following lemma and its proof are due to Rohrlich. We thank him for kindly allowing
us to publish it here.

Proposition 2.0 (Rohrlich). Every Hecke character ofE satisfying (i) and (ii)
has the formχcanµ̃ for some canonical Hecke character ofE and some quadratic
Hecke characterµ of F . Hereµ̃= µ◦NE/F .
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Proof. Let χcan be a canonical Hecke character ofE of CM type,. Let χ be a
Hecke character ofE satisfying (i) and (ii); then the conductor ofχ is divisible by
all primes ofE that are ramified overF (see [Roh4, Proposition 1]). Putξ = χ/χcan
and viewξ as a character of the idèle class group[E∗] = E∗\E∗A. SinceE is generic,
the natural map[F ∗] −→ [E∗] is injective. By [Roh4, Proposition 1],ξ is trivial
on [F ∗]. Condition (ii) implies thatξ is quadratic onE∗\E∗UE , whereUE is as in
the proof of Proposition 1.3. So the identityξ(ā) = ξ(a), which follows from (i),
becomesξ(ā/a) = 1 for a ∈ E∗\E∗UE . Thus there is a quadratic characterµ of
F ∗\F ∗NE/F (UE)F

∗2
A such thatξ(a)= µ(NE/F (a)) for everya ∈ E∗UEF

∗
A. Extend

µ to a characterµ of [F ∗]. Then µ̃ = µ ◦NE/F is a character of[E∗] such that
µ̃= ξ onE∗UEF

∗
A. So there is a characterϕ of E

∗UEF
∗
A\E∗A ∼= CL−(E) such that

ξ = ϕµ̃. After replacingχcanby χcanϕ (which is another canonical Hecke character),
we may assume thatϕ is 1. Thenξ = µ̃ as idèle class characters ofE. This equation
implies thatξ(ā) = ξ(a) for everya ∈ [E∗]. On the other hand,ξ |[F ∗] = 1 implies
ξ(ā)ξ(a)= 1. Thereforeξ is quadratic. It follows thatµ is quadratic when restricted
toNE/F ([E∗]). But according to class field theory, the groupNE/F ([E∗]) has index
2 in [F ∗], and a representative for the nontrivial coset is the idèlec that is−1 at one
infinite place and 1 everywhere else. Sincec2 = 1, we haveµ(c)2 = µ(c2)= 1, and
we conclude thatµ is quadratic on all of[F ∗], as desired.
By the proposition, the characters in the introduction are just Hecke characters of

E satisfying (i) and (ii). Throughout this paper, we denote the characters byχcanµ̃

instead of the simplified notationχ we used in the introduction. We do this for
two reasons. First, it clearly indicates the different roles thatχcan andµ play in
the formula. Second,χ is reserved for the unitary characterχcan| |1/2A in the rest of
this paper. Notice thatχ |∗FA = εE/F (refer to [Roh4, Proposition 1]). From now on,
we fix µ andχcan, and we letf be the conductor ofµ. Sinceµ̃|F ∗A = 1, there is a

unique characterη of [E1] such thatµ̃= η̃. Notice that the superscript˜ has different
meanings overµ andη. We writeηk = ηχk|E1A , so η̃k = η̃χ2k.

Lemma 2.1. (1) Let θ be a Hecke character ofE such that its restriction onF ∗A
is the quadratic Hecke characterε associated toE/F . Then the local root numbers
satisfy

∏
w|v

ε

(
1

2
,θw,

1

2
ψEw

)
=




θw(−1) if v ∈ Ssp,

i|2mσ+1| if v = σ ∈,,

ε

(
1

2
,εv,ψv

)
εv(2)(−1)n(θw)θw(δ) if v ∈ Sin,

ε

(
1

2
,εv,ψv

)
if v ∈ Sra.

Here the product takes over placesw of E above a placev of F , andmσ is given by
θσ (z)= (|z|/z)2mσ+1.
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(2) Assume that every prime factor of2f splits inE. Then the global root number
of (χcanµ̃)2k+1 is (−1)ktµ∞(−1).

Proof. (1) Whenv = ww̄ is split, we identifyEw
∼= Ew̄ with Fv andψw

∼= ψw̄

with ψv. Under the identification,θw̄ = θ̄w, and so the product is equal to

ε

(
1

2
,θw,

1

2
ψw

)
ε

(
1

2
, θ̄w,

1

2
ψw

)
= θw(−1).

The infinity case is well known, the inert case follows from the proof of [Roh5,
Proposition 3], and the ramified case is from [Roh4, Proposition 8]. This proves(1).
Notice that the additive character used here is 1/2ψEv , while Rohrlich usesψEv . As
for (2), first note that the root number of(χcanµ̃)2k+1 is that ofχη̃k. Now apply(1)
to θ = χη̃k. Since every prime factor of 2f is split inE andχ is unramified outside
δ�E , one hasεv(2)(−1)n(θw)θw(δ) = 1 for all v ∈ Sin. Since the root number ofε is
1 andεv = 1 for split v, one has∏

v∈Sin∪Sra
ε

(
1

2
,εv,ψv

)
=

∏
v=σ∈,

ε

(
1

2
,εv,ψv

)−1
= i−t .

Also,mσ = k for all σ ∈, in this case. Finally,∏
v∈Ssp

µv(−1)=
∏
v|∞

µv(−1)= µ∞(−1)

sinceµv(−1)= 1 for every nonsplit and finite placev. Taking the product overv in
(1) for θ = χη̃k, one proves(2).

From now on, we assume that every prime ofF dividing 2f is split in E/F and
(−1)ktµ∞(−1)= 1 so that the root number of(χcanµ̃)2k+1 is 1. Then there isα ∈ F ∗
such that(χ = χcan| |1/2,ηk,α) satisfies(0.5) and(0.8).
SinceE is a generic CMnumber field,n(χv)= 1 forv ∈ Sra (see [Roh4, Proposition

3]). The next two lemmas follow from Lemma 2.1 and [Y4, Proposition 1.2, Corollary
1.4] easily.

Lemma 2.2. Assume thatE/F is ramified atv. Thenchar(π [nv/2]v �v) is an eigen-
function ofGv with eigencharacter̄ηk,v = ηv. Note thatnv = (1/2)n((δα/4)ψEv ) is
an integer.

Lemma 2.3. Assume thatE/F is inert atv. Thennv = (1/2)n((δα/4)ψEv ) is an
integer, andchar(πnv

v �v) is an eigenfunction ofGv with eigencharacter̄ηk,v = 1.
For a totally real number fieldF of degreet , we identifyF⊗R withRt via the real

embeddings ofF , and we extend the identification toF ⊗C∼= Ct . Given a function
f onC, we define a function onCt , still denoted byf , via

f (z)=
t∏

i=1
f (zi).
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In particular,f (x) = ∏
f (σ(x)) for x ∈ F , where the product runs over all real

embeddings ofF . Let�t = {z= (z1, . . . ,zt ) ∈ Ct : Im(zi) > 0} be the Hilbert upper
plane. For a CM number field with maximal totally real number fieldF and a CM
type,, we embedE intoCt via,. A CM point in�t is just a point in the image of
this embedding for someE and,.
For each finite placev, let pv be the prime ideal ofF corresponding tov. Let

l=
∏
v∈Sra

p−[nv/2]v

∏
v∈Sin∪Ssp

p−nv+kvv .(2.1)

We refer to the introduction for the definitions ofnv and kv. We fix once and for
all a square root

√
# of #mod4

∏
v∈Sspp

−nv+2kv
v . For each ideal classC ∈ CL−(E),

we choose a primitive idealA ∈ C−1 relatively prime to 2δαf (recall thatf is the
conductor ofµ). Let a=NE/FA and chooseb ∈ �F satisfying

b2≡#moda2,

b ≡√#mod2p−nv+2kvv for v ∈ Ssp,

b ≡ 0modpnv−2[nv/2]v for v ∈ Sra.

(2.2)

Finally, let

θµ,k,A(z)= Im(2z)−(k/2)
∑

x∈(la)−1
γµ(x)Hk,F

(
x
√
Im(2z)

)
e
(
x2z

)
,(2.3)

where
γµ(x)=

∏
v∈Sµ

q−(kv/2)v G
(
x3vαxψv,µv

)
char

(
πnv−kv
v �∗v

)
(x)

only depends onµ. HereG(ψ,χ) is the usual Gauss sum. Thenθµ,k,A is a non-
holomorphic Hilbert modular form onF of weight (2k+1/2) = ((2k+1/2), . . . ,
(2k+1/2)) (see [G, Theorem 5.3, p. 154]).

Theorem 2.4. LetF be a totally real number field of degreet overQ. Letµ be
a quadratic Hecke character ofF of conductorf. LetE be a generic CM quadratic
extension ofF such that every prime ofF dividing 2f is split inE/F . Let k ≥ 0 be
an integer with(−1)ktµ∞(−1) = 1, and lets be the number of prime ideals ofF
ramified inE. Then, for(δ,α) satisfying (0.3), (0.5), and (0.8), the central L-value

L(k+1, (χcanµ̃)2k+1)= κ

∣∣∣∣∣∣
∑

C∈CL−(E)

(Na)k

(χcanµ̃)2k+1(Ā)
θµ,k,A(τ )

∣∣∣∣∣∣
2

.(2.4)

HereN =NF/Q, τ =−(#α(b+δ)/2) ∈ E is a CM point, and

κ = 21+(1/2)t−sπ t
∣∣N(

#3α2
)∣∣(2k+1/4)

|N#|1/2N(l)

(
(4π)k

k!
)t

.
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Proof. First, at an infinite placev = σ ∈,, one haskσ = k ≥ 0 and Im(σ (δα)) >
0, by (0.5) and Lemma 2.1. So Imσ(τ) > 0, and the right-hand side of(2.4) is
meaningful. Second, note thatSsp∩Sχη̃k = Sµ. For v ∈ Sµ, one has, by Proposition
1.7 and Lemma 1.2,

Iv,C(x)= q−(3kv/2)+(nv/2)−(n(ψv)/4)
v

(
1−q−1v

)−1
·ψv

(
1

2
x3vαx

2
)
G

(
x3vαxψv,µv

)
char

(
πnv−kv
v �∗v

)
(x).

Here we have used the fact thatχ is unramified atv.
Forv ∈ Ssp−Sµ butv �= vi , the assumptionn

(
(x3vα/4)ψv

)≤ 0 implies (by Lemma
1.1)

Iv,C(x)= q
(nv/2)−

(
n(ψv)/4

)
v ψv

(
1

2
x3vαx

2
)
char(πnv

v �v)(x).

So one has, by Lemma 2.2, Lemma 2.3, and Proposition 1.7,

Iv,C(x)=




q
(nv/2)−(n(ψv)/4)
v char

(
π
nv
v �v

)
(x) if v ∈ Sin,

q
(1/2)[nv/2]−(n(ψv)/4)
v char

(
π
[nv/2]
v �v

)
(x) if v ∈ Sra,

∣∣2σ (
δ3α

)∣∣1/4( (4π)k

k!
)1/2

φk
|σ(δ)|,|σ(α)|(σ (x)) if v = σ ∈,,

1

χcanη̃k(P̄
ei
i )

ψv

(
1

2
x3vαx

2
)
char

(
π−eiv �v

)
(x) if v = vi,

q
−(3kv/2)+(nv/2)−(n(ψv)/4)
v

(
1−q−1v

)−1
ψv

(
1

2
x3vαx

2
)

·G(
x3vαxψv,µv

)
char

(
π
nv−kv
v �∗v

)
(x) if v ∈ Sµ,

q
(nv/2)−(n(ψv)/4)
v ψv

(
1

2
x3vαx

2
)
char

(
π
nv
v �v

)
(x) otherwise.

Putting everything together, one obtains

IC(ηk)=
(
(4π)k

k!
)t/2

D
1/4
F c1/22t/4

∣∣N(
#3α2

)∣∣1/8(Na)k(
χcanµ̃

)2k+1
(Ā)(N l)1/2

Jk(a).

Here

Jk(a)=
∑

x∈(la)−1
γµ(x)

∏
v∈Ssp

ψv

(
1

2
x3vαx

2
) ∏

σ∈,
φk
|σ(δ)|,|σ(α|)(x).

For v = ww̄ ∈ Ssp, we identifyEv = Ew⊕Ew̄ = Fv⊕Fv and writeδ = (xv,−xv).
We choose and fixw so thatxv =

√
#mod2π−nv+2kvv . So

b ≡ xvmod2π
−nv+2kv
v for v ∈ Ssp.
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We may assume that
b ≡ xvmoda

2 for v = vi.

So

ψv

(
1

2
#bαx2

)
=


ψv

(
1

2
x3vαx

2
)

if v ∈ Ssp,

1 if v ∈ Sin∪Sra.
Also note that Im(σ (τ )) = −σ(δ3α) = |σ(δ3α)| = |#3α2|1/2. Applying (0.14) and
(0.15), one gets, after some computation,

Jk(a)=
∣∣#3α2

∣∣k/4θµ,k,A(τ ).
Now applying Corollary 1.4 and using the factDE =D2

F |N#|, one proves(2.4).
Now we consider the special case whereF has ideal class number 1. We write

l= l�F , f= f�F , a= a�F .

Choose a lattice decomposition (it always exists sinceF has ideal class number 1 and
every prime factor of 2 splits inE)

A2=
[
a2,

b+δ

2

]
(2.5)

such thatb satisfies(2.2). Recall that, in general, associated to a Hecke characterµ

of a number fieldF of class number 1 with conductorf, there is a characterµ′ of the
group(�F /f)

′ given by

µ′(x)= µ(x�F )µ∞(x).(2.6)

Here(�F /f)
′ is the multiplicative group of elements in�F relative prime tofmodulo

those who are 1modf and positive with respect to every real embedding ofF . In
terms of local characters, one has

µ′(x)=
∏
v∈Sµ

µv(x).

Define, for the fixed quadratic Hecke characterµ of F and an integerk ≥ 0,
θµ,k(z)=

(
Im(2z)

)−(k/2) ∑
x∈�F ,(x,f )=1

µ′(x)Hk

(
x
√
Im(2z)

)
e
(
x2z

)
.(2.7)

Then θµ,k is a nonholomorphic Hilbert modular form of weight(2k+1)/2 which
only depends on(F,µ,k) and not on the CM number fieldE. Notice thatθµ,k is
holomorphic whenk = 0 or 1. We also remark that

θµ,k
(
c2z

)= µ′(c)sign(Nc)kθµ,k(z),(2.8)
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for every unitc ∈ �∗F , whereN is the norm map fromF toQ. In particular,θµ,k(z)=
0 unlessµ′(−1)(−1)kt = µ∞(−1)(−1)kt = 1; that is, the global root number of
(χcanη̃)

2k+1 is 1. A simple calculation gives

θµ,k,A(z)= γ ′N(la)−kµ′(a)θµ,k
(

z

(la)2

)
.(2.9)

Hereγ ′ ∈ C1 is some constant independent of the ideal classC ∈ CL(E). We also
mention thatµ∞(−1) = µ′(−1). Plugging(2.9) into (2.4), we have the following
theorem.

Theorem 2.5. Let F be a totally real number field of ideal class number1 and
degreet overQ. Letµ be a quadratic Hecke character ofF of conductorf�F such
that(2,f )= 1. LetE be a generic CM quadratic extension ofF such that every prime
of F dividing 2f is split inE/F . Let k ≥ 0 be an integer with(−1)ktµ∞(−1) = 1,
and lets be the number of prime ideals ofF ramified inE. Then there existδ and
α satisfying (0.3), (0.5), and (0.8). For such a pair(δ,α), let l = l�F be defined by
(2.1). For an ideal classC ∈ CL(E), we choose a primitive idealA ∈ C−1 relatively
prime to2αδf�E , and we write

A2=
[
a2,

b+δ

2

]
, a,b ∈ �F ,

such thatb satisfies (2.2). Let

τA=−#α(b+δ)

2(la)2

and
θµ,k(A)= µ′(a)sign(Na)kθµ,k(τA).

Thenθµ,k(A) is independent of the choice ofa andb (subject to condition (2.2)) and
the central L-value

L
(
k+1, (χcanµ̃)2k+1

)= κ

∣∣∣∣∣∣
∑

C∈CL(E)

θµ,k(A)

(χcanµ̃)2k+1(Ā)

∣∣∣∣∣∣
2

.(2.10)

Here

κ = 21+(1/2)t−sπ t
∣∣N(

#3α2
)∣∣(2k+1)/4

|N(#)|1/2|N(l)|2k+1
(
(4π)k

k!
)t

.

Proof. Since every prime ofF above 2 splits inE, andF has class number 1,
one can chooseδ satisfying (0.3). For the same reason, every primitive idealA of E
relative prime to 2δ�E has a lattice decomposition

A=
[
a,

b+δ

2

]
,
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wherea�F = AĀ and
b2≡#mod4a.

Changingb in the cosetb+ 2a�F , one can assume thatb satisfies(2.2) if A is
relatively prime to 2f δ�E . Since the root number of(χcanµ̃)2k+1 is 1, one can find
α ∈ F ∗, unique up to a factor fromNE/FE

∗ satisfying(0.5). Replacingα by its
multiple fromNE/FE

∗ if necessary, we can assume thatα also satisfies(0.8). This
proves the existence ofδ andα satisfying (0.3), (0.5), and (0.8). Now the theorem
follows from Theorem 2.4 and the computation above.

Although Theorem 2.5 is a special case of Theorem 2.4, let us point out that
its hypotheses guarantee the remarkable fact that the theta function involved only
depends onF andµ and not onE. Neither the condition thatF has ideal class
number 1 nor the condition that every prime factor off splits inE (see [Y4]) can be
dropped to have the independence.
For a CM type, of E, we writek, for

∑
σ∈,kσ . According to Rohrlich [Roh,

p. 700], there is a group homomorphism

hk, : CL(E)−→ CL
(
Ek,

)
.(2.11)

HereEk, is the number field generated byzk, =∏
σ∈,σ(z)k, z ∈ E∗.

Theorem 2.6. Let the notation and assumptions be as in Theorem 2.4. Assume
thatCLra(E)CL(F )⊃ kerh(2k+1),. Then the following statements are equivalent.
(a) The central L-valueL(k+1, (χcanµ̃)2k+1)= 0.
(b) The global theta liftingθα,χ (ηk)= 0.
(c) For every ideal classC ∈ CL(E), IC(ηk)= 0.
(d) For every ideal classC ∈ CL(E), τA is a root of the theta functionθµ,k,A.

Proof. Claims (a) and (b) are equivalent by a theorem of Rogawski ([Ro, Theorem
1.1]; see also [Y, Theorem 0.4]). Claims (c) and (d) are equivalent by the proof of
Theorem 2.4. So it suffices to prove that (a) and (c) are equivalent. This follows from
a trick of Rohrlich. Letξ̃ be an ideal class character ofE trivial on CLra(E)CL(F ).
Then it is trivial on kerh(2k+1), by assumption. By a theorem of Rohrlich [Roh3,
Theorem 1], one hasχ2k+1can ξ̃ µ̃ = ((χcanµ̃)

2k+1)σ for someσ ∈ Gal(Q̄/E(2k+1),).
Applying [S2, Theorem 1], one has thatL(k+ 1, (χcanµ̃)2k+1) = 0 if and only if
L(1/2,χξ̃ η̃k) = 0 for every ideal class characterξ of E trivial on CLra(E)CL(F )

(notice the shift of center). By Corollaries 1.4, 1.5, and 1.6, this is equivalent to
IC(ηk)= 0 for every ideal classC ∈ CL(E)/CLra(E)CL(F ).

3. F =Q. In this section, letd ≡ 1mod4 be a squarefree integer and letµ be the
quadratic Hecke character ofQ associated to the quadratic fieldQ(

√
d). Thenµ′ =

( d ). LetD ≡ 7mod8 be a positive squarefree integer, and letE = ED =Q(
√−D).

We viewE as a subfield ofC by fixing a choiceδ =√−D = i
√
D ∈ iR>0. We write
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χD,d for χcanµ̃ in this section. Here we have chosen and fixed the CM type, to be
the fixed complex embedding ofE, and we ignore it from now on. The other choice
of , does not give anything new. Letχ , η, andηk be as in Section 2.

Lemma 3.1. Assume that every prime factor ofd is split in ED, and (−1)k =
sign(d). Then, for a decompositionD = D1D2 with Di > 0, there are exactly
hD/2s−1 canonical characters ofED such that

ε

(
1

2
, (χη̃k)v,

1

2
ψEv

)(
χη̃k

)
v
(δ)= εv(D1)= εv(D2)(3.1)

for every placev of Q. Here s is the number of positive prime factors ofD, and
ε = εD = (−D ). Conversely, for every canonical characterχcan, there is a (unique
up to order) decompositionD =D1D2 satisfying (3.1) andDi > 0.

Proof. Since 2 is split inE/F , ε2(2) = 1; and then(3.1) is true for every place
v � D by Lemma 2.1. Fix a canonical Hecke characterχcan of E, so other canonical
Hecke characters ofE are justχcanξ , whereξ runs over all ideal class characters of
E. Let

iv = ε

(
1

2
,
(
χη̃k

)
v
,
1

2
ψEv

)(
χη̃k

)
v
(δ)=±1.

Then(iv)v|D ∈ S, where

S = {
(dv)v|D : dv =±1,

∏
dv = 1

}
is a subgroup of(Z∗)s of order 2s−1. First, we define a map

F = (Fv) : CL(E)∧ −→ S, Fv(ξ)=
ε
(
1/2,

(
χξη̃k

)
v
, (1/2)ψEv

)(
χξη̃k

)
v
(δ)

iv
.

Here CL(E)∧ is the character group of CL(E). By Lemma 2.1, Fv(ξ) = ξv(δ) =
ξ(Pv), wherePv is the prime ideal ofED abovev. SoF is a group homomorphism.
Moreover,F(ξ)= 1 if and only if ξ is trivial on CLra= CL2. SoF induces a group
injectionF : (CL(E)/CL2)∧ −→ S. By genus theory,h2 = |CL2 | = 2s−1, so the
induced map is an isomorphism. On the other hand, we have a map from the set of
decompositionsD =D1D2 with Di > 0 to S via(

D =D1D2
) �→ (

εv(D1)
)
v|D =

(
εv(D2)

)
v|D.

One finds by counting that this map is also a bijection. This proves the lemma.

Theorem 3.2. Let D ≡ 7mod8be a positive squarefree integer withs prime
factors. Letd ≡ 1mod4be a squarefree integer such that every prime factor of
d is split in ED. Assume(−1)k = sign(d). Let D = D1D2 with Di > 0 and let
χcan = χcan,D1,D2 be a canonical character satisfying (3.1). Fix a square rootr
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of −Dmod16d2. For every ideal classC ∈ CL(E)/CL2, choose a primitive ideal
A ∈ C−1 relatively prime to2d, and write

A2=
[
a2,

b+√−D
2

]
(3.2)

with a > 0 and

b ≡ rmod8d2 and b ≡ 0modD1.(3.3)

Then

L
(
k+1, (χD,d)

2k+1)= κ

∣∣∣∣∣∣
∑

C∈CL(E)/CL2

1

χ2k+1D,d (Ā)
θd,k(τA,D1)

∣∣∣∣∣∣
2

.(3.4)

Here

κ = 2s−(3/2)πk+1

k!|d|2k+1√D

(
D2

D1

)(2k+1/4)

and

τA,D1 =
b+√−D
8D1d2a2

,

and

θd,k(z)=
(
Im(2z)

)−(k/2) ∑
(x,d)=1

(
d

x

)
Hk

(
x
√
Im(2z)

)
e
(
x2z

)

is a (nonholomorphic) modular form forD0(4d2) of weight(2k+1)/2, wheree(z)=
e2πiz as usual.

Proof. This is just a special case of Theorem 2.5 where we can chooseα explicitly.
Setα = (4/D2); then(χ,ηk,α) satisfies(0.3), (0.5), and(0.8). Moreover,

nv =



0 if v � 2D1,

1 if v|D1,

2 if v = 2,
and

kv =



0 if v � d∞,

1 if v|d,
k if v =∞.

Also l = 4D1, f = d. Now applying Theorem 2.5 and Corollary 1.5, one gets (3.4).
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Remark 3.3. If we takeα = (4/D1), we get a variation of formula(3.4) with the
positions ofD1 andD2 switched. These two formulae can be derived from each other
by the Poisson summation formula. In general, one can take anyα ∈ D1NE/QE

∗
satisfying(0.8) and apply Theorem 2.5 to get a variation of formula (3.4). This gives
various relations among theta functions.

Theorem 3.4. Let (D,d,k) be as in Theorem 3.2.
(1) If the central L-valueL(k+1, (χD,d)

2k+1)= 0 and (2k+1,hD)= 1, then for
any positive factorD1 ofD, and for any primitive idealA relative prime to2Dd, the
CM pointτA,D1 defined in Theorem3.2 is a root of the modular formθd,k.
(2) Conversely, for a fixed positive divisorD1 of D, if, for every ideal classC ∈

CL(E), there is a primitive idealA relative prime to2Dd such that the CM point
τA,D1 is a root of the modular formθd,k, then the central valueL(k+1, (χD,d)

2k+1)=
0 for every Hecke characterχD,d of ED.

Proof. The proof follows from Theorem 2.6, Theorem 3.2, and the following fact:
WhenL(k+1, (χD,d)

2k+1) = 0 for one canonical Hecke character ofED, it is zero
for every canonical Hecke character ofED, since they are Galois conjugate to each
other under the condition(2k+1,hD)= 1 (see [Roh3, Theorem 1]).

Corollary 3.5. Letp ≡ 7mod8be a prime, and letd ≡ 1mod4be a squarefree
integer. Assume that every prime factor ofd is split inEp. Letk ≥ 0be an integer with
(−1)k = sign(d), and let(2k+1,hp)= 1. Then the central L-valueL(k+1,χ2k+1p,d )=
0 if and only if all the Heegner points ofX0(4d2) with endomorphism ring� are roots
of the theta functionθd,k. Here� is the ring of integers ofEp.

Proof. It is clear thatτA,1 is a Heegner point ofX0(4d2) with endomorphism ring
�= �Ep . By Theorem 3.4, it now suffices to prove that theτA,1 account for all such
Heegner points when[A]2 andrmod8d2 vary. Here[A] denotes the ideal class ofE
containingA, andr is a square root of−pmod16d2 (see Theorem 3.2). This can be
shown by counting. Indeed, sincep is a prime,hp is odd, and so CL(E)2= CL(E).
Furthermore,

#
{
rmod8d2 : r is a square root of−pmod16d2

}= 2t ,
wheret is the number of prime factors of 4d2. So the total number of pointsτA,1 is
2t hp. On the other hand, recall that the Heegner points ofX0(4d2) can be parameter-
ized by(�,n, [A]), wheren is an integral ideal of� such that�/n∼= Z/4d2, and[A]
are ideal classes ofE (see [Gr2, p. 89]. So there are also 2t hp such Heegner points.

Proof of Theorem 0.2.Let c = e−(π
√
p/4d2) < 1. By Theorem 3.4, it suffices to

prove thatτ = (b+√−p)/8d2 is not a root ofθd,k. We assumed �= 1, so that the
theta functionθd,k has no constant term. The cased = 1 is similar (and a little bit
easier) and is left to the reader.
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Let us first assumek = 0. Recall thatH0(x)= 1. Forc < .8, one has

1

2
|θd,0(τ )| ≥ c−

∞∑
n=2

cn
2 ≥ c−c4−c9

∞∑
n=0

c7n > 0.

Soθd,0(τ ) �= 0 if −(π√p/4d2)≤ log4/5; that is,p ≥ .081d4.
Secondly whenk = 1,H1(x)= x. In this case, one has

1

2
|θd,1(τ )| ≥ c−

∞∑
n=2

ncn
2

> c−2c4−c3
∞∑
n=3

n
(
c3

)n−1

= c

[
1−2c3− 3c

8−2c9(
1−c3

)2
]

≥ 0 if 0< c ≤ 0.7.
So whenc ≤ 0.7, that is,p ≥ .206d4, one hasθd,1(τ ) �= 0.
Finally, let k ≥ 0 be an arbitrary integer with(−1)k = sign(d). SinceHk is a

polynomial of degreek, there is a constantC1= C1(k) such that∣∣Hk(x)
∣∣≤ C1|x|k for all |x| ≥ 1.

SinceHk has finitely many roots, there are positive constantsC2 andC3 > 1 such
that ∣∣Hk(x)

∣∣≥ C2 for all x ≥√
C3.

So when 2Im(τ )= (
√
p/4d2)≥ C3, one has (θd,k is even)(

2Im(τ )
)k/2

2
|θd,k(τ )| ≥ C2c−C1

∞∑
n=2

(√
p

4d2

)k

nkcn
2

= cf (c),

where

f (c)= C2−π−kC1(− logc)kc3
∞∑
n=2

nkcn
2−4.

Notice thatf (c) is continuous and independent ofd or p in the interval(0,1),
and limc �→0+f (c) = C2 > 0. So there is a constant 0< C4 < e−C3 < 1 such that
f (c) > 0 for all 0< c ≤ C4. TakeM(k)= (4/π) log(1/C4); then forp >Md4, one
hasθd,k(τ ) �= 0, and soL(k+1,χ2k+1p,d ) �= 0.

Remark 3.6. Theorem 0.2 remains true when one replacesp by any positive
squarefree integerD ≡ 7mod8. The proof is the same.
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