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CENTRAL VALUES OF HECKEL-FUNCTIONS
OF CM NUMBER FIELDS

FERNANDO RODRIGUEZ VILLEGASanD TONGHAI YANG

0. Introduction. It is well known that the zeta function of CM (complex multi-
plication) abelian varieties can be given in termd.efunctions of associated Hecke
characters. In this paper, we prove a formula expressing the central special value of
the L-function of certain Hecke characters in terms of theta functions. The formula
easily implies that the central value is nonnegative and yields a criterion for its pos-
itivity. Combining this criterion with the work of Arthaud and Rubin, we show that
certain CM elliptic curves have Mordell-Weil rank zero over their field of definition.

Let F be a totally real number field of degreeand letu be a quadratic Hecke
character ofF of conductorf such that(20r, ) = 1. Given a CM extensioit of
F, we consider the twisf = xcanit Of 1 by a “canonical” Hecke charactetan of
E (see Section 2), wherg = o Ng/r, as well as its odd powerg?+2, k € Z-o.
Consider the following condition:

(*) Allunits of E are real and every prime & dividing 2f is splitin E/F.

Our main result is the following.

THEOREM 0.1 (Sketch of Theorem 2.5)Assume tha¥F has ideal class number
and (—1)* 100 (—1) = 1, whereps : (FQR)* — C* is the infinite part ofx. Then
there is an explicit theta functiof), , over F, depending only om andk, such that
for every CM quadratic extensiof of F satisfying the conditions), the central
L-value

Z O,k (A)
2k+1\ _ .k
CeCL(E)

Here, « is an explicit positive numbe?f € C~1 is a primitive ideal relatively prime
to 2f, andé,, x () is essentially the value of a theta functign, at a CM point inE
associated t@(?.

We emphasize that, ; is independenbf the CM field E, which is one of the
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542 RODRIGUEZ VILLEGAS AND YANG

reasons we viewy as a twist ofu by a canonical Hecke character Bf We also
remark that under the hypothesis of the theorem, the root numbe#st is 1.

As a corollary to the theorem, we deduce that under certain conditions on the ideal
class group oft, the centralL-value vanishes if and only if all the termig x () in
the theorem vanish (Theorem62. Using this criterion, we obtain, for example, the
following result.

For a primep = 7mod 8 and a squarefree integee= 1mod4, letA(p)¢ be the
CM elliptic curve with CM by E = Q(/—p), studied by Gross in his thesis (see
[Gr]). Let & be the class number @, andy be one of thé: Hecke characters df
associated tat (p)¢. Then we have the following theorem.

THeOREM 0.2 Assume that every prime divisord$plits inE. There is a constant
M depending only ot such that ifp > Md?*, sign(d) = (—1)¥, and (2k +1, h) =
1, then the central L-valud.(k + 1, x%*1) > 0. For k = 0,1, we may takeM =
.081, .206, respectively.

Combining this with an unpublished result of Arthaud, later generalized by Rubin
[Ru], we obtain the following corollary.

CoroLLARY 0.3 Assumel = 1mod4 d > 0, and every prime factor af is split
in E. Then for allp > .0814%, the elliptic curveA(p)¢ has Mordell-Weil rank zero
over its field of definition.

We made no effort to optimize the constautin 0.2, and our result can surely be

improved. The primeg can be replaced by a positive squarefree intéyer 7 mod 8.

It would certainly be interesting to lower the powerdin the statement. We should

also point out that the hypothesi@ + 1,4) = 1 in 0.2 is crucial to our proof (it
guarantees that there is only one Galois orbit of Hecke characters); and indeed, as
pointed out in [RV2],L(x2,2) =0 whenp =59 andd = 1.

The Hecke characters considered here and their associated CM abelian varieties
were studied by Shimura (see [S, Section 7.8], [S2], and [S3]), who also discussed
their special values. The terminology “canonical” is due to Rohrlich (see [Roh2],
[Roh3], [Roh4], and Section 2).

The main formula of this paper has its root in [RV] (and its sequel [RV2], [RVZ],
and [RVZ2]) and is a variation of [Y, Theorem 0.7].

Special cases of Theorem 0.2 have been previously proven by Montgomery and
Rohrlich [MRoh], [Roh2], [Roh3] and the first author [RV2]. CorollarB@vas proved
by Gross [Gr], using descent theory, in the cdse 1. The split condition in Theorem
0.2 and Corollary @ is not essential and can be dropped. We refer to [Y4] for details.

By a result of Rogawski ([Ro]; see also [Y]), the nonvanishing of the ceiitral
value is equivalent to the nonvanishing of certain global theta lifting.

The idea to derive the main formu(@.1) is as follows. We have the formula of
[Y] expressing the central.-value as the absolute square of some theta integral on
a unitary group of one variable. The task is simply to compute the theta integral. In
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Section 1, we break the integral into local integrals and compute these in the split case
and the infinite case. For a finite place Bfthat does not split irf, the calculation
amounts to finding an eigenfunction of the Weil representation of the unitary group
mentioned above. A general explicit construction of such eigenfunctions is given in
[Y3], [Y4]. For the characters considered in this paper, the eigenfunctions we need
turn out to be very simple (Lemmas2and 23). Putting things together, we find that

the theta integral is the sum of the special values of certain theta series at CM points in
E (Theorem 24). Now assume that has ideal class number 1. Then the theta series
involved become the same and, independent of the CM fiEldae get the main
formula. To obtain the nonvanishing results, we use a theorem of Shimura concerning
special values of-functions of conjugate Hecke characters (the trick goes back to
Rohrlich; see [Roh2], [Roh3], [MRoh], [RV2]). In Section 3, we specialize to the
caseF = Q and obtain a more explicit form of the main formula (Theore®) &nd

the results mentioned above.

AcknowledgmentsT. H. Yang would like to thank S. Kudla and D. Rohrlich for
their advice and suggestions. He also thanks the Institute for Advanced Study for its
hospitality and financial support during the preparation of this paper in 1996. Finally,
we thank the referee and M. Stoll for their careful reading of the manuscript and for
their valuable suggestions and corrections.

Notation. In this paperF is always a totally real number field, aitlis always a
“generic” quadratic CM extension df in the sense of Rohrlich [Roh4, p. 519]; that
is, 07 = 0%, and the natural map GIE') — CL(E) is injective. We further assume
that every prime of above 2 is split inE to avoid technical complications at 2. We
fix a “canonical” additive charactef =[]y, of F4/F as follows:

2mix i i

e if vis real

0.2 ' |
(0.2) Yy (x) e~ ZriMX) if y | p s finite,

wherea : F, LN Q, — Q,/Z, — Q/Z. Of course, every additive character of
Fa/F has the formuy : x — ¥ (ax) for somea € F. Letyg =y otr and letn(yr,)
be the local conductor af,. On F,, or E,, we take the Haar measure self-dual with
respect taj, or Y g,, respectively.

For the sake of simplicity, we assume that theredssaE* with A = §2 € F* such
that

1 if visramified inE/F,

(0.3) ord, A = . L
0 if vis unramified inE/F.

Such a8 always exists ifF’ has ideal class humber 1. (Recall that we have assumed
that every prime factor of 2 i splits inE.)
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Let E* be the norm-1 subgroup df. Given a charactey of [E] = E1\E}, let
i be the Hecke character @ given by7(z) = n(z/z). On EL, we take the Haar
measure such that meas) = 1 if v is nonsplit and med§?) = 1 if v is split in
E/F. In the latter case, we have identifi&} with F* via (z,z71) - z. OnEL, we
take the Haar measure such that nig&S]) = 1. Then the Tamagawa number of the
algebraic grougE? is characterized by the identity

A4 =T 1 ;
(0.9 . s =Tam(E)T [, fcoras

for every Schwartz functiorf =[] f, € S(LEYD).
Let x be a fixed Hecke character &f whose restriction taFg is the quadratic
Hecke character = e, of F associated t&/ F by class field theory. Then every

such Hecke character @ is of the form 7 for some characten of [E1]. If the
global root number of 7 is 1, there isx € F* (unique up to norm fronE™*) such that

1 1
09 [Te (5 (s 3y ) (), 0 = e

wlv

Here, the product takes over placesof E abovev, ande(1/2, (x)w, (1/2VE,)
are Tate’s local root numbers. We write, in short,

1, 1 1, ., 1
€ (Es (Xn)vv El//Ev> = Egé (57 (Xn)ws EWEUJ> .
For a datum(y, n, «) satisfying(0.5), we define
Ssp={v: E/F is split atv},
Sin={v{oo: E/F is inert atv},
Srta={v{oo: E/F is ramified atv},
Sy ={v{oo: xn is ramified atv}.
WhenE/F is split at a place of F, we choose a place of E abovev and write
8§ = (xy, —xy) € E¥ = Ei, @ EX = (F})%. We define
n(xgalﬂy) if ve Ssps

(0.6) ny = |:n((8a/4)1ﬁgu) +1
2

:| if ve Sin USra.

Here[x] means the integral part of a real numbeiForv € S, 5, we definek, to be
the smallest integer such that botty,, and7,, are trivial on 1+ n,’jj@w, wherew is
a place ofE abovev. For other finite places, we takek, = 0. Let ® be a CM type
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of E, and identify infinite places of with ®. Forv =o € ®, there is an integef,,

such that
2"
(i), (@) = (Z) .
We define
(0.7) ko = mq sign(Im (o (5a))) — 1-sign(Im (0(80{))).

2

The condition(0.5) implies thatk, > 0. In particular, ifm, > 0, then IM(o (§)) > 0
andk, = m. For technical reasons, we assume throughout this paper (one can always
chosex to satisfy both(0.5) and(0.8)) that

3
(0.8) n(x'f 1//v> <0 foreveryv e Sgp, thatisn, < —2ord, 2.

Finally, we normalize the classical Hermite functions as follows: Let

©9) = es®), ¢"=2ik( ;Tj) #°x)
be thekth Hermite function foik > 0. Then

(0.10) i*gk = o,

where

$(x) = /R ¢(e 7 dy
is the Fourier transform ap. One has

1 k!
NACo 4

The following properties op* are well known:

(0.11) <¢ ® )

d
— ¢ = ket — 27 xp*.

k k-1
o dx

(0.12) P = xoF—
4

Notice that there is a unique polynomid} (x) of degreek (the Hermite polynomials)
such that

(0.13) P (x) = He(x)e ™

It is easy to check thallp = 1 andH1 = x. In general H; has the same parity &s
Given positive numbers andb > 0, we define for the purpose of this paper
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(0.14) ¢§’b(x)=¢k< a3b )
Note

k ko\_ 1 L
(015) (¢a,bv ¢a,b)_ @(47[)](

1. General setting. For the first two lemmas, we change the notation temporarily.
Let F be ap-adic field with the ring of integers§, and letr be a uniformizer off'.
Let ¢ be an arbitrary nontrivial additive character Bf and letn = n(y) be its
conductor, by which we mean the smallest integesuch thaty |,»¢ = 1. Soy is
unramified if and only ifz < 0. Let x be a character of* and letm = n(x) be its
conductor, that is, the smallest integeisuch thaty is trivial on 1+ x7™0. Define

(1.1) 1(f.x) = meas0) /@ v (v) dy

to be the Fourier transform of the functign(x?) char©)(x) with respect toy. We
also define

(1.2) 1(¢, x) = meag0*) ! /G X@Y@)dx.

O

Both 7 (y, x) and I (v, x) are independent of the choice of the Haar measuré& on
or F*, respectively.

LemMa 1.1 Let the notation be as above. Then the following hold.
(D If p #£2,then

chanz"0)(x) if n <0,

1= {q_("/z)xlf(— %xz)y” char0)(x) ifn>0.

Here 10
A Y ae©/n0) ¥ (7" 1a%)
y=y([@"y)=
va
is the Weil index of the characteF of 0/70 induced byz”" 1y (see [We], [RR,
Appendix]).

@) If p=2andn(y) <0, then
I (¢, x) = charz0)(x).

LemMMA 1.2 Assume that eithex or  is ramified. One has

T, ) = 0 if n£m,
0= q*”(l—qfl)‘lG(w,x) if n=m.
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Here
GCW.o= Y, v@x@

ae(0/n"0)*
is the Gauss sum ¢f and .

Now we switch back to the notation of the introduction. First we have the following
proposition.

ProrosiTioN 1.3 Let f = [] f, be an integrable function ofEL] such that
fo(—x) = fy(x) whenevelE / F is ramified atv. LetCL(E) be the ideal class group.
Let CL™(E) = CL(E)/CL(F) and leth— = #CL™ (E) be the relative ideal class
number ofE /F. Then

1
(13) | f@de=i= 3 g,
[E7] CeCL™(E)

where

Ie(f)=[].cthH.
and
_ ngf(g)dg if v is nonsplit,
4 fucth)= {f@*, f(gawau-_)l) dg if v=wuw is split.

Herea = (ay) € E} corresponds to an ideal i@ —1, and the Haar measures are nor-
malized as in the introduction. In particular, the Tamagawa numbetofTam(E?),
equals2®/h~, wheres is the number of finite places &f ramified inE/F.

Notice thatl, ¢ (f) is independent o whenv is nonsplit.
Proof. Let

UE:H@EUX 1_[((:*,

v{oo oed
Ur=]]0;x []R*
vtoo oed

and letU! = A(Ug) be a subgroup oE£1(A), wherei(z) = z/z. SinceE is generic,
the natural map CF) — CL(E) is injective andE* N Fx = F*. So one has a
commutative diagram of exact sequences

1 Ur Ug Ul 1

L

1 [F*] [E*] [E1] 1
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By the snake lemma, one obtains the exact sequence
1— 0% — 0 — E'NUY - F*Up\F} — E*Up\Ej} — E'UNE} — 1.

Since E is generic,0% = 0% and F*Up\F — E*Ug\E}. So EXUNE} =
CL™(E), and ELNU* = 1. Therefore] ¢, () Uag "ac is a fundamental do-
main for[E1], whereac € E7 corresponds to an ideal ifi—1. Notice that

vt=T]x0%)x [ E2x]] O

vESra vESHUD vESsp

and E} = {£1} x A(0F, ) whenv € Sra. Since f,(—x) = f,(x) for v € Sra, One has
by (0.4),

dg = d
/[Ellf(g) g= > /U L f@)dg

CeCL™(E) tacac

=Y Tam(E')2 / fo(g)dg ]_[f fo(g)dg

v Ssp veSsp® Cvdw tag
Tam(E?!
= % > Ie(h).
Plugging inf =1, one gets
Tam(EY)
1=—F1—~h".
25

Recall that given a daturty, «, ¥), where x is a Hecke character af whose
restriction onFy is eg,r, ¥ is a nontrivial additive character dfy, anda € F*,
one has a Weil representatian, , = ®wq, ,,» 0f G(A) on the spaceS(Fy) of
Schwartz functions, wheré = U(1) = E! is the norm-1 group of/F (refer to
[HKS]; see also [Y]). It depends on the choice pf«, andy. When a charactey
of [E1] = EY\E}, satisfies(0.5), there is a functionp; = []¢5, € S(Fa), given in
[Y, Theorem 215] (¢5, is an eigenfunction ofG,, w,, ) with eigencharactey, for
a nonsplit place), such that

1 L<% Xﬁ)

'Lt ewrr)

(1.5) cTam(E — 2|64, (D).

Here

(1.6) c= [] @+ah™ [1 @—gh %™

veSinNSyj VESspNS
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and
1.7) 0 (m) (1) =/[ ]Zwa,x(gw(x)n(g)dg-
xeF

Applying Proposition 13 and the analytic formula foL(1,eg,r), one has the
following corollary.

CoRrOLLARY 1.4 Let the notation be as above. Let= [F : Q], and lets be the
number of prime ideals of ramified inE/F. Let Dr be the absolute discriminant
of F. Then

2

1 218t Dr
1.8 L=, xn)=——— 1,
(1.8) (2 Xn) s Z c(n)
CeCL™(E)
Here
(1.9) Ie =Y [[hc®
xeF v
and
fE% a)a,x,v(g)¢ﬁ(x)77v(g) dg if vis nonSp”t

(1.10) Lickx)= {fm wa,x,v(gawagl)%(x)nv(g)dg if v =ww is split

Herea = (ay,) € E} corresponds to an ide& € c1

Let CLya = Ira/ Pra be the “ramified” ideal class group &, wherel, is the group
of fractional ideals ofE whose prime factors are all ramified i/ F, and Py, is
the subgroup of;5 of principal ideals. It is easy to check that Glis a subgroup
of CL(E). Let CL, be its image in CLC. The following corollary is an immediate
consequence of Proposition 1.3.

CoroLLARY 1.5 Let the notation and assumptions be as in Proposition 1.3. For
C eCL (E)andC’ € CL,, one has

Icc(f)=1Ic(f).

CoroLLARY 1.6 Let the notation and assumptions be as in Corollary 1.4.& et
be an ideal class gharacter d@f trivial on CL(F)CL,, so that there is a character
£ of [E1] such thatt (z) = £(z/Z). Then(x, £n, @) also satisfies (0.5), and

IcEn) =EC) ().

Proof. We first verify that, = 1 for every nonsplit place of F. Itis true at infinite
places sincé is of finite order. Wherv is finite and nonsplit§, is unramified. By
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assumptiong, (g,) = £(P,) = 1, whererg, is a uniformizer ofE, and®p, is the
corresponding prime ideal &. So&, = 1. This proves the first claim and

Lycn,x)=1,c(n,x)

for a nonsplit placev of F. Here we writel, c(n,x) for I, c(x) to indicate its
dependence on Whenv is splitin £/ F, one still haspg, = ¢; sincet is unramified
atv (see [Y, Section 2]). Applying (1.10), one gets

Ly c(&n,x) = & (awaz ) Iy,c (1, x).

Taking the product over and using the assumption thats trivial on CL(F)CLa,
one proves the corollary.
For each ideal clas6€ € CL™(E), we choose a primitive ide&@l (no factor from
F) of E in C~1 relatively prime to 28F, where§ is the conductor of 7. Let
mzqgil 22...q3£r

be the prime decomposition 8f, thenp; = Ng,¢*B; is a prime ofF splitin E/F.
Letv; = w;w; be the place oF associated tp;. We may assum@; corresponds to
Bi. Letw; be a uniformizer off,;, and definer = (ay) € E} via

7l ifw=w;
1.11 = ! ’
(1.11) hw {1 otherwise

ProposiTION 1.7. With the notation and assumptions as above, one has

(1.12)
b3, (%) foe SaUse,
ya [(dr)ke .
i20(53a)| \/;¢0(5),0(a)|(0(x)) ifv=0c € CI)’
1 1, , . |
oo < | e e\ e’ Jehartr ) ife =
v,c\X) = i

_ _ 1
g /2428, (-x3ax2>

2 v
XI(xgaxwv,(Xn)ljl) if ve SspNSy7,
_ 1 3 :
R RTIN (Exfaxz) ; (xza %’4x> stherwise.

wherey’ = x| |/g(1/2), andgj, is a unitary eigenfunction afG,, w., ) With eigen-
characterp,. The numbers,, k,, andk, were defined in the introduction.
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Proof. Whenv is nonsplite;, is an eigenfunction ab, ., with eigencharactey,
by construction (see [Y, Theorem1B]). So/, c(x) = ¢j5, (x). Explicit formulae for
¢5, are givenin [Y4, Section 1] for finite and foro € ® with Im(c(6)) > 0. Lemma
1.1in[Y4]is still valid when Inv (§) < O if we replace sigtx) by signim(o (§a))).
Whenv is split, we verify the case € S, ;N Ssp and leave other cases to the reader.
By [Y, (2.30)], one has

7o =meag7h0,) "% p(char(1+7%0,)),

wherep is an isometry defined by [¥2.28)] (Jx3«|*/3 should belx3«|Y/? in the
formula). Letw, , be the “natural” realization of the Weil representationcf on
S(F,) given by [Y, Corollary 2.10], where the subscripis omitted. Sincep is an
isometry, one has fog € 07,

0 y0(2)P5, (x) = meagdr®0,) "2 p(w, ., (g) char(14 750, )) (x).
Applying [Y, Corollary 2.10] and [Y, (2.28)], one has then

—(1/2 _
Y2 (g)p(char(g 1+ 75 0,)) (x)
_ _ 1 _
= g WAy (), (Exfaxz) Yo(xSaxg™)

-char(z» %0, (x).

g, x,v(8) P57, (X) = meaiﬂ{ju@v)

Here we have used the fact méag = q,’}('/’“)/z and the assumptior((x,?a/4)w,,) <
0, specified in (0.8) So,

_ _ 1 _
IU,C(-X) = qv (kv/z)"l‘(nv/z) (n("//v)/‘l)wv (5.}(3@.}(2) I(xl?axwv’ (Xﬂ)v l)

2. The main formula. According to Rohrlich [Roh4, p. 518], a canonical Hecke
character off is a Hecke charactef.an satisfying the three following conditions for
some CM typed of E:

(i) xcan(2) = xcan() for ideals2 prime to the conductor ofcan.

(i) xcan(@Of) = +a® for « € E* prime to the conductor ofcan.

(iii) The conductor ofycanis divisible only by primes oF that are ramified oveF.

WhenE is generic and every prime &f dividing 2 is split in E, which we assume
throughout this paper, canonical character& @xist (see [Roh4]). They differ from
each other by an ideal class characteEdfivial on the ideal class group df. The
following lemma and its proof are due to Rohrlich. We thank him for kindly allowing
us to publish it here.

ProrosiTioN 2.0 (Rohrlich) Every Hecke character of satisfying (i) and (ii)
has the formycant for some canonical Hecke character Bfand some quadratic
Hecke charactep. of F. Hereji = juo Ng/r.
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Proof. Let xcan be a canonical Hecke character ofof CM type ®. Let x be a
Hecke character of satisfying (i) and (ii); then the conductor gf is divisible by
all primes of E that are ramified oveF (see [Roh4, Proposition 1]). Pét= x / xcan
and view¢ as a character of the idele class gré@p] = E*\ E{. SinceL is generic,
the natural mag F*] — [E*] is injective. By [Roh4, Proposition 1k is trivial
on [F*]. Condition (ii) implies that is quadratic onE*\ E*Ug, whereUg is as in
the proof of Proposition .B. So the identityé (a) = &(a), which follows from (i),
becomest(a/a) = 1 for a € E*\E*Ug. Thus there is a quadratic characterof
F"‘\F*NE/F(UE)FK2 such tha& (a) = u(Ng,r(a)) for everya e E*UEFX. Extend
w to a charactey, of [F*]. Thenj = o Ng/r is a character of E*] such that
=& on E*UgF}. So there is a characterof E*Ug Fx\E} = CL™ (E) such that
& = pji. After replacingycan by xcang (Which is another canonical Hecke character),
we may assume thatis 1. Thent = 1 as idéle class characters Bf This equation
implies thaté(a) = &£(a) for everya € [E*]. On the other hand;|;r+) = 1 implies
&(a)é(a) = 1. Therefores is quadratic. It follows that: is quadratic when restricted
to Ng,r([E*]). But according to class field theory, the grodip,r([E*]) has index
2 in [F*], and a representative for the nontrivial coset is the idéleat is—1 at one
infinite place and 1 everywhere else. Sirée= 1, we havew(c)? = u(c?) = 1, and
we conclude that is quadratic on all of F*], as desired.

By the proposition, the characters in the introduction are just Hecke characters of
E satisfying (i) and (ii). Throughout this paper, we denote the characteps it
instead of the simplified notatiop we used in the introduction. We do this for
two reasons. First, it clearly indicates the different roles that and u play in
the formula. Secondy is reserved for the unitary charactegan| &/2 in the rest of
this paper. Notice tha;u};A = eg,r (refer to [Roh4, Proposition 1]). From now on,
we fix u and xcan, @and we letf be the conductor of. SincemFg =1, there is a

unique charactey of [E1] such thafi = 7. Notice that the superscriphas different
meanings ovep andn. We write gy = nXkIE}&, son, = fx .

LemmaA 2.1 (1) Let6 be a Hecke character af such that its restriction orf'y
is the quadratic Hecke characterassociated ta£/F. Then the local root numbers
satisfy

Gw(—l) ifve Ssp,
i2me+1 fv=0e®,
1 1 1 .
1_16 E’ew’ EI/wa =€ (E’ €y, 1ﬁv) ev(z)(_l)n(ew)gw(‘s) if v e Sin,
wlv
1 .
€ (5, €v, Wv) if ve Sa.

Here the product takes over placesof E above a place of F, andm, is given by
b (2) = (|z|/2)?" +L.
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(2) Assume that every prime factor 2ffsplits in E. Then the global root number
of (xcan®)**1 is (=1 oo (—1).

Proof. (1) Whenv = ww is split, we identifyE,, = Ey with F, andyr, = ¢y
with yr,. Under the identificatiorg; = 6,,, and so the product is equal to

1 P llﬁ 1 g 1W —6,(—1)
€ 27 u)>2 w € 27 U)72 w - Yw .

The infinity case is well known, the inert case follows from the proof of [Roh5,
Proposition 3], and the ramified case is from [Roh4, Proposition 8]. This pidyes
Notice that the additive character used here/@ydg,, while Rohrlich uses/g,. As

for (2), first note that the root number 6fcanit)? 1 is that of x 7. Now apply (1)

to 6 = x 7. Since every prime factor off2s split in E and x is unramified outside
80, one has, (2)(—1)"®g,,(8) = 1 for all v € Sin. Since the root number efis

1 ande, = 1 for splitv, one has

~1
1_[ e(%,ev,wv)z 1_[ e(%,ev,tpv) =i’

veSinUSra v=0€ed

Also, m, =k for all o € ® in this case. Finally,

[T roD=]]r(D=pe(-1)

vESsp v|oo
sinceu,(—1) = 1 for every nonsplit and finite plaae Taking the product over in
(1) for 6 = x i, one proveg?2).

From now on, we assume that every primefoflividing 2f is split in E/F and
(—D)¥ oo (—1) = 1 so that the root number 0fcanit)%t1is 1. Then there ig € F*
such that(x = xcanl |2, nx, o) satisfies(0.5) and(0.8).

SinceE is ageneric CM number field(yx,) = 1forv € S5 (see [Roh4, Proposition
3]). The next two lemmas follow from Lemmal2and [Y4, Proposition .2, Corollary
1.4] easily.

LEMMA 2.2 Assume thaE/F is ramified atv. Thencharz"/?0,) is an eigen-
function of G, with eigencharactery , = n,. Note thatr, = (1/2)n(($a/4)VE,) IS
an integer.

LemmA 2.3 Assume thakE/F is inert atv. Thenn, = (1/2)n((8a /4y E,) iS an
integer, andchar(z,*0,) is an eigenfunction of;, with eigencharactef , = 1.

For a totally real number field of degree, we identify F ® R with R’ via the real
embeddings of’, and we extend the identification fo® C = C'. Given a function
f onC, we define a function oft’, still denoted byf, via

f@o=[]re.

i=1
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In particular, f(x) = [] f(c(x)) for x € F, where the product runs over all real
embeddings of. Let ¥’ = {z = (z1,...,2;) € C' : Im(z;) > 0} be the Hilbert upper
plane. For a CM number field with maximal totally real number fi€ldind a CM
type @, we embed~ into C’ via ®. A CM point in %' is just a point in the image of
this embedding for somg and ®.

For each finite place, letp, be the prime ideal of' corresponding t@. Let

(2.1) (=[] we™2 T et
VESra vESinUSsp

We refer to the introduction for the definitions of andk,. We fix once and for
all a square root/A of Amod 4]_[Uesspp;"”+2"“. For each ideal class € CL™(E),

we choose a primitive ideall ¢ C~1 relatively prime to 3«f (recall thatf is the
conductor ofu). Leta = Ng,r2 and choosé € O satisfying

b% = Amoda?,

(2.2) b=+Amod2,™ % forv e S,
b = Omody’» 2/l for v € Sra.
Finally, let
(23)  Oura@=1m@) "2 3y ) Hyp (xV/IM22) )e(x22),
xe(la)~1
where

Yu(x) = 1_[ gy ®/2 G (x3axyry, wy) char(n 5 0%) (x)
veS,
only depends onw. Here G(v, x) is the usual Gauss sum. Thép o is a non-
holomorphic Hilbert modular form o of weight (2k+1/2) = ((2k+1/2),...,
(2k+1/2)) (see [G, Theorem.B, p. 154]).

THEOREM 2.4. Let F be a totally real number field of degreeover Q. Let 1 be
a quadratic Hecke character @f of conductorf. Let E be a generic CM quadratic
extension off' such that every prime af' dividing 2f is splitin E/F. Letk > 0 be
an integer with(—1)* uo(—1) = 1, and lets be the number of prime ideals &f
ramified inE. Then, for(8, «) satisfying (0.3), (0.5), and (0.8), the central L-value

2

" (Na)k
(2.4) Lk+1, (xcan)* ) =k — G, (D)
- CE@ (teanit) 1@ 4%

Here N = Nr,q, T = —(Aa(b+6)/2) € E is a CM point, and

o 21+(l/2)t—x7Tt|N(A3a2)|(2k+1/4) ((4n)k>’

INAIY2N () k!
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Proof. First, at an infinite place = o € ®, one ha%, = k > 0 and Im(c (a)) >
0, by (0.5) and Lemma 2.1. So lm(z) > 0, and the right-hand side @R.4) is
meaningful. Second, note th&¢,N S, 5 = S,. Forv € S, one has, by Proposition
1.7 and Lemma 2,

B B -1
L.c(x)=gq; (Bky/2)+(ny/2) (ﬂ(iﬁu)/‘l)(l_qv 1)
1
Yy (Exgax2> G(xEOlXWv, Mv) char(ng”_k”@j)(X)-

Here we have used the fact thais unramified ab.
Forv € Ssp— S, butv # v;, the assumption((xfa/4)w,,) < 0implies (by Lemma

1.1)
(” /2)—\n() /4 1 "
Iy c(x) = (” )% (Exgax2> Chal’(ﬂ'v“@v)(x),

So one has, by LemmaZ2, Lemma 23, and Proposition %,

g"P ™" char(r0,) (x) if v € Sin.
g 22— oy m/2g ) (1 it v e Sra
i\ 1/2
3\ (14 [ (4r) x .
iZU(S O[)| ( k! ¢|g(3)|’|g(a)|(0(x)) if v=0 € ®,
1 1, .
I — ) ( —XJ0X )char L 0y) (x) if v=nu;,
nC = e (B 2 (o 00) ’
gy Bl DH D= (g tyLy (Exvax2>
G (Bax iy, 1) char(n:}v"‘v@j)(x) if ves,,
_ 1 .
gm/2=e@/A <§xffocx2> char(,"0,) (x) otherwise.

Putting everything together, one obtains

(a).

(4)k )t/Z Dllp/4c1/22’/4|N(A3a2) |1/8(Na)k ,

I =
com ( k (xcan) > @) (VD12

Here

T@= > 7 [] v (-x ax ) [T 4600w ®:

xe(la)~1 vESsp oed

Forv = ww € Ssp, we identify E, = E,, ® Ey = F, ® F, and writed = (x,, —x,).
We choose and fix so thatx, = v/Amod 2z, " +% So

b =x,mod 2z, *%  for v e Sep.
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We may assume that
b=x,moda® forv=u;.

1 3.,.2 if
Yy <:—LAbax2> = i 2 vt v e Ssp
2 1 if ve Sin USra.

So

Also note that Info (1)) = —o (83a) = |0 (83x)| = |A3a?|Y2. Applying (0.14) and
(0.15), one gets, after some computation,
Ji(@) = |A%2%0,, (1),
Now applying Corollary ¥4 and using the facbg = D%|NA|, one proveg2.4).
Now we consider the special case wheérdas ideal class number 1. We write
[=10F, f=fO0r, a=a0F.

Choose a lattice decomposition (it always exists sifideas ideal class number 1 and
every prime factor of 2 splits iik)

(2.5) A% = |:a2, ?]

such thath satisfies(2.2). Recall that, in general, associated to a Hecke character
of a number fieldF of class number 1 with conduct@irthere is a character’ of the

group(0 /)’ given by
(2.6) w'(x) = u(xO0p) poo (x).

Here(Or/f) is the multiplicative group of elements @y relative prime tgf modulo
those who are 1 mddand positive with respect to every real embeddingFofin
terms of local characters, one has

W) =] mo@).
veS),
Define, for the fixed quadratic Hecke charagteof F and an integek > 0,
@7 Gu@=(m@)) P 3 W H(x/Im@D) )e(x%).
x€0p,(x, f)=1

Then6, x is a nonholomorphic Hilbert modular form of weigtk +1)/2 which
only depends orn(F, u, k) and not on the CM number fielf. Notice thatf,, ; is
holomorphic wherk = 0 or 1. We also remark that

(2.8) 0.k (c%2) = 11/ () SIgN(N )* 0, 1 (2),



CENTRAL HECKE L-VALUES 557

for every unitc € 0%, whereN is the norm map fron¥ to Q. In particularg,, (z) =
0 unlessp/(—1) (=¥ = poo(—1) (=D = 1; that is, the global root number of
(xca)®**1is 1. A simple calculation gives

(2.9) O k.2(2) =y Nla) ™ 1/ (@)b,.x (&7) .

Herey’ e C! is some constant independent of the ideal ctass CL(E). We also
mention thatu.(—1) = u'(—=1). Plugging(2.9) into (2.4), we have the following
theorem.

THEOREM 2.5 Let F be a totally real number field of ideal class numieand
degreer over Q. Letu be a quadratic Hecke character #f of conductorf0r such
that(2, f) = 1. LetE be a generic CM quadratic extension®fuch that every prime
of F dividing 2f is splitin E/F. Letk > 0 be an integer with—1)* 100 (—1) = 1,
and lets be the number of prime ideals &f ramified in E. Then there exist and
« satisfying (0.3), (0.5), and (0.8). For such a p&k, @), let [ = [0 be defined by
(2.1). For an ideal clas€ € CL(E), we choose a primitive ide&l € C~1 relatively
prime to2«§f0g, and we write

b+46
A% = |:a2, %] a,beOlp,

such thatb satisfies (2.2). Let

_ Aa(b+9)
= T o 0a)2

and
Ok Q) = 1 (@) SIgNN @) 6, 1 (720
Thené,, (20 is independent of the choice @&ndb (subject to condition (2.2)) and
the central L-value
2
Ok ()

(2.10) L(k+1, (xcani)* ) =« LS
( “ ) 5 ) (toan 1)

Here

21+(l/2)t—s7.[t|N(A3a2)|(2k+1)/4 (4m)k 4
T IN@)IN DT ( ! >
Proof. Since every prime of’ above 2 splits inE, and F has class nhumber 1,

one can chooseé satisfying (0.3). For the same reason, every primitive ideaf E
relative prime to 20 has a lattice decomposition

b+$6
Ql: s T A |
[“ 2 }
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whereaOp = A2 and
b® = Amod 4.

Changingbd in the coseth + 2a0F, one can assume thatsatisfies(2.2) if A is
relatively prime to 80g. Since the root number df¢can1)%*1 is 1, one can find

a € F*, unique up to a factor fronvg,r E* satisfying (0.5). Replacinga by its
multiple from Ng,r E* if necessary, we can assume thaalso satisfieg0.8). This
proves the existence éfand« satisfying (0.3), (0.5), and (0.8). Now the theorem
follows from Theorem 2.4 and the computation above.

Although Theorem 5 is a special case of Theorend2let us point out that
its hypotheses guarantee the remarkable fact that the theta function involved only
depends onF and . and not onE. Neither the condition thaf' has ideal class
number 1 nor the condition that every prime factof splits in E (see [Y4]) can be
dropped to have the independence.

For a CM typed of E, we writek® for ) _q ko. According to Rohrlich [Roh,
p. 700], there is a group homomorphism

(2.11) hio : CL(E) —> CL(EX®).

Here EX? is the number field generated b4 =[], .4 0 (2)%, z € E*.

THEOREM 2.6, Let the notation and assumptions be as in Theorem 2.4. Assume
that CLra(E) CL(F) D kerhk+1)o. Then the following statements are equivalent.

(@) The central L-valud. (k +1, (xcan)%*1) = 0.

(b) The global theta lifting,, , (7x) = 0.

(c) For every ideal clas€ € CL(E), Ic(nx) =0.

(d) For every ideal clas€ € CL(E), tg is a root of the theta functio@,  g.

Proof. Claims (a) and (b) are equivalent by a theorem of Rogawski ([Ro, Theorem
1.1]; see also [Y, Theorem 0.4]). Claims (c) and (d) are equivalent by the proof of
Theorem 24. So it suffices to prove that (a) and (c) are equivalent. This follows from
a trick of Rohrlich. Let be an ideal class character Bftrivial on CLya(E) CL(F).
Then it is trivial on ket (2c+1y0 by assumption. By a theorem of Rohrlich [Roh3,
Theorem 1], one hagZ:1& i = ((xcan)®*11)? for someos € Gal(Q/E@+D?),
Applying [S2, Theorem 1], one has tha(k + 1, (xcanit)%t1) = 0 if and only if
L(1/2, xEfx) = O for every ideal class charactéerof E trivial on ClLa(E)CL(F)
(notice the shift of center). By Corollaries4]l 15, and 16, this is equivalent to
Ic(nx) =0 for every ideal clas§ € CL(E)/CLa(E) CL(F).

3. F=Q. Inthis section, letl = 1mod4 be a squarefree integer andddte the
quadratic Hecke character @f associated to the quadratic fiel(v/d). Thenu' =
(‘—’). Let D = 7mod 8 be a positive squarefree integer, andtlet Ep = Q(+v/—D).

We view E as a subfield of by fixing a choice$ = /—D = i/D € iR (. We write
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xDp.a Tor xcanit in this section. Here we have chosen and fixed the CM tiyge be
the fixed complex embedding @&, and we ignore it from now on. The other choice
of ® does not give anything new. Let, n, andn; be as in Section 2.

Lemma 3.1 Assume that every prime factor dfis split in Ep, and (—1)* =
sign(d). Then, for a decompositio® = D;D, with D; > 0, there are exactly
hD/ZS_1 canonical characters of’p such that

1 1
(3.1) € (5’ (X7 vs EI#EU) (x7k) ,(8) = €,(D1) = €,(D2)

for every placev of Q. Here s is the number of positive prime factors bf, and
e = ep = (=2). Conversely, for every canonical charactesan, there is a (unique
up to order) decompositio® = D1 D satisfying (3.1) and; > O.

Proof. Since 2 is split inE/F, €2(2) = 1; and then(3.1) is true for every place
vt D by Lemma 21. Fix a canonical Hecke charactega, of E, so other canonical
Hecke characters df are justyxcant, Whereé runs over all ideal class characters of
E. Let

) 1, . 1 -
iy=¢€ <§, (x7),- EW&) (x7k),(8) = +1.
Then(iy)yp € S, where
S={Wup : dy ==L, [[dv =1}
is a subgroup ofZ*)* of order 21, First, we define a map

e(1/2, (x&7ik) . /2, ) (xETiK) ,(O)

Ly

F=(F,):CL(E)" — S,  F,()=

Here CL(E)" is the character group of GE). By Lemma 21, F,(§) = £,(8) =

£(Py), wheres, is the prime ideal o p abovev. SO F is a group homomorphism.
Moreover,F(¢§) = 1 if and only if & is trivial on CL3 = CL2. So F induces a group
injection F : (CL(E)/CL»)" — S. By genus theoryhs = |CLy| = 21, so the
induced map is an isomorphism. On the other hand, we have a map from the set of
decompositiond = D1 D, with D; > 0to S via

(D= D1D2) > (év(Dl))v\D = (EU(DZ))U\D'

One finds by counting that this map is also a bijection. This proves the lemma.

THEOREM 3.2 Let D = 7mod8be a positive squarefree integer withprime
factors. Letd = 1mod4be a squarefree integer such that every prime factor of
d is split in Ep. Assume(—1)k = sign(d). Let D = D1D> with D; > 0 and let
Xcan = XcanD;,D, D€ @ canonical character satisfying (3.1). Fix a square reot
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of —Dmod 16/2. For every ideal clas€ € CL(E)/CL,, choose a primitive ideal
2 e C~1 relatively prime to2d, and write

(3.2) A2 = | 42 b+v-D
. , >
witha > 0 and
(3.3) b=rmod&? and b=O0modD;.

Then

1
B4) L+l Gpd* N =«| > gy k()

CeCL(E)/CLy XD.d

Here
25-@/2 k41 / ., (2k+1/4)
K=—m-—-———| —
k!|d|%+1/D (Dl)
and
b++—D
T = >,
A1 =g 4242
and

b0 = (IM@22) " “? Y (%) (eI )e(3%)

(x,d)=1

is a (nonholomorphic) modular form fdto(4d?) of weight(2k +1)/2, wheree(z) =
e?"i2 as usual.

Proof. Thisisjust a special case of Theorerb &here we can chooseexplicitly.
Seta = (4/Dy); then(x, ni, @) satisfieg0.3), (0.5), and(0.8). Moreover,

0 ifvf2Dy,
ny=1411 ifv|D1,
2 ifv=2,
and
0 ifvtdoo,
ky=11 ifvl|d,
k if v=o0.

Also ! =4D1, f =d. Now applying Theorem.3 and Corollary 15, one gets (3.4).
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Remark 3.3. If we takea = (4/D1), we get a variation of formulé3.4) with the
positions ofD1 and D2 switched. These two formulae can be derived from each other
by the Poisson summation formula. In general, one can takexanyD1 Ng,q E*
satisfying(0.8) and apply Theorem.3 to get a variation of formula (3.4). This gives
various relations among theta functions.

THEOREM 3.4 Let(D,d, k) be as in Theorem 3.2.

(1) If the central L-valueL (k+ 1, (xp.¢)**1) =0and (2k +1,hp) = 1, then for
any positive factoD, of D, and for any primitive idea®( relative prime ta2Dd, the
CM pointrg p, defined in TheorerB.2 is a root of the modular form, .

(2) Conversely, for a fixed positive divis@r, of D, if, for every ideal clasg e
CL(E), there is a primitive ideafl relative prime to2Dd such that the CM point
To(.p, IS @ root of the modular forré, «, then the central valug (k+1, (xp )%+ =
0 for every Hecke characteyp 4 of Ep.

Proof. The proof follows from Theorem.g, Theorem 2, and the following fact:
WhenL(k+1, (xp.q)%*1) = 0 for one canonical Hecke characterfop, it is zero
for every canonical Hecke character Bf,, since they are Galois conjugate to each
other under the conditio®k+1, hp) = 1 (see [Roh3, Theorem 1]).

CoroLLARY 3.5 Let p = 7mod8be a prime, and le# = 1 mod 4be a squarefree
integer. Assume that every prime factor/a$ splitin E£,. Letk > 0 be an integer with
(—1)* = sign(d), and let(2k+1, ) = 1. Then the central L-valug(k+1, Xﬁf‘jl) =
0if and only if all the Heegner points &fp(4d2) with endomorphism rin@ are roots
of the theta functiod, ;. Here0 is the ring of integers of ,.

Proof. Itis clear thatrg 1 is a Heegner point ako(442) with endomorphism ring
0 =0g,. By Theorem 34, it now suffices to prove that they ; account for all such
Heegner points whef(]2 andr mod &72 vary. Here[2(] denotes the ideal class @f
containing¥, andr is a square root of p mod 16/2 (see Theorem.3). This can be
shown by counting. Indeed, singeis a prime,z, is odd, and so CLE)2 = CL(E).
Furthermore,

#{rmod &/ : r is a square root of- pmod 16/?} = 2",

wherer is the number of prime factors o#/4. So the total number of pointsy 1 is
2'h,,. On the other hand, recall that the Heegner point&g#d?) can be parameter-
ized by (0, n, []), wheren is an integral ideal 06 such that0/n = Z/4d?, and[2]
are ideal classes df (see [Gr2, p. 89]. So there are als@ 2 such Heegner points.

Proof of Theorem 0.2.Let ¢ = e~@vP/4>) - 1. By Theorem 3, it suffices to
prove thatr = (b+./—p)/8d? is not a root ofd, .. We assumel # 1, so that the
theta functiond, , has no constant term. The case= 1 is similar (and a little bit
easier) and is left to the reader.
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Let us first assumé = 0. Recall thatHp(x) = 1. Forc < .8, one has

oo

1 P s
§|9d,0(f)| > C—ZC" > C—C4—cgzc7" > 0.
n=2 n=0

S00,4,0(t) # 0 if —( /p/4d?) <log4/5; that is,p > .081d%.
Secondly whert = 1, H1(x) = x. In this case, one has

1 > 2
510a.1()] = c—X;nc"
n=

o0
>c—2c4-¢3 Zn(cs)n_l
n=3

1 0.3 3c8 —2¢°
=c|l-4dc"———
(1-c3)°

>0 if0<c<0.7.

So whenc < 0.7, that is,p > .20644, one ha®);.1(t) # 0.
Finally, let k > O be an arbitrary integer witk—1)* = sign(d). Since H; is a
polynomial of degreé, there is a constan; = C1(k) such that

|Hi(x)| < Calx[* forall x| > 1.

Since H has finitely many roots, there are positive constaitsand Cz > 1 such
that
|Hi(x)| = C, forallx > /Cs.

So when 2Inir) = (ﬁ/4d2) > C3, one has{j x is even)

00 k

p 2

104k(D)] = Coc=C1) (%) nk
n=2

=cf(0),

(2Im(0))*"?
2

where

o0
f(e)=Ca—nkC1(~loge)ke® anc"2*4.
n=2

Notice that f(c¢) is continuous and independent @for p in the interval (0, 1),
and lim.o4 f(c) = C2 > 0. So there is a constant C4 < e~ 3 < 1 such that
f(c)>0forall 0< ¢ < Cs. TakeM (k) = (4/7)log(1/Cs); then forp > Md*, one
has6, ;(t) # 0, and saL (k+1, lefjl) #0.

Remark 3.6. Theorem (2 remains true when one replacgsby any positive
squarefree intege = 7mod 8. The proof is the same.
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