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Abstract. Let θ be the standard theta function associated to a CM elliptic
curve E and a nowhere vanishing differential ω on E, both defined over a

number field. What is the significance, if any, of the Taylor coefficients of θ
at 0? In this paper we do two things. First, we reformulate joint results with

D. Zagier showing a relation between these coefficients and square roots of

central values of Hecke L-series for certain curves. Second, we give two new
proofs of a p-adic interpolation (due to A. Sofer and originally conjectured

by N. Koblitz) of those square roots (suitably modified) in the case of good

ordinary reduction; one of the proofs uses the relation just mentioned. For
simplicity, details are only given for five curves defined over Q; what to expect

for arbitrary CM elliptic curves remains unclear, though we suspect there is a

more general phenomenon.
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1. Introduction

1) Let (E,ω) be an elliptic curve with complex multiplication together with
a nowhere vanishing differential on it, both defined over a number field F . Let
L ⊂ C be the lattice of periods of ω and θ(u, L) for u ∈ C the standard theta
function associated to L (see (2.9) for the exact definition). A fundamental result
of Damerell implies that the Taylor coefficients of θ at u = 0 are in F . We may
ask:

Question: What is the significance, if any, of the Taylor coefficients of θ at the
origin?

The relation between theta functions and Eisenstein series via logarithmic
differentiation has proved to be crucial in the study of the arithmetic of the curve.
However, the relation between the Taylor coefficients of a function and those of its
logarithmic derivative may be very intricate (consider 1 − eu for example), and it
is not a priori clear to us what the Taylor coefficients of θ itself might mean.

Our intention in this paper is to present some evidence for the relevance of the
question we have raised. Indeed, in §3 we show how the main results of [15] can
be reformulated in this setting, obtaining an answer to the question for the curves
A(l) studied by Gross [3], for a prime l ≡ 3 mod 8. For clarity of exposition we
restrict ourselves to the simplest possible cases (five in all) where the curve A(l) is
defined over Q. We obtain:

Partial answer: For the curves A(l) with l = 11, 19, 43, 67 or 163 the square of
the (k − 1)-st Taylor coefficient of θ at the origin is essentially the central value
L(ψ2k−1, k), where ψ is its associated Hecke character.

We refer the reader to §3.1 for a description of the five curves in question and to
the theorem in §3.2 for the precise statement.

For other curves A(l) with l ≡ 3 mod 8 prime (no longer defined over Q) the
central value is the square of linear combinations of Taylor coefficients of theta
series associated to Galois conjugates of the curve. At present, is not clear to us
what exactly to expect for arbitrary CM elliptic curves, though we suspect there is
a more general phenomenon.

2) Koblitz conjectured in [10] that there exists a consistent choice of square
roots of suitably modified central values L∗(ψ2k−1, k) having p-adic interpolation
properties for all primes p > 2 of good ordinary reduction (we emphasize that the
choice must be made independently of p). This has interesting implications in the
Iwasawa theory of CM elliptic curves (cf. the work of Li Guo [4]).

The conjecture was first proved by A. Sofer in her thesis for all curves A(l) with
l ≡ 3 mod 4, l > 3 prime. We present here two new proofs of her results (again we
give details for the above curves only). The first is conceptually simple (see §4.4 for
a short sketch): for primes p > 2 of good ordinary reduction, θ becomes a function
on the formal group of E, hence a fortiori on Ĝm, to which we may associate a
p-adic measure on Zp by Cartier duality. The interpolation now follows from the
above relation between the Taylor coefficients of θ and central values. The second
is along the lines of [15] and might be of independent interest (see §4.1-4.3). We
show how we can associate to any quadratic form Q (positive definite, even integral,
and of even rank) a measure on the underlying lattice with values in the ring of
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Katz’ p-adic modular forms (extending an idea of B. Perrin-Riou [14]). For Q the
norm form of certain imaginary quadratic fields we find that when evaluated at
a specific trivialized elliptic curve the two variable measure associated to Q splits
as the product of two identical one variable measures. This p-adic version of the
factorization formula (25) of [15] then yields the desired interpolation. The precise
statements are given in: §4.1 (general theta measures), §4.2 (complex and p-adic
factorization formulas), and §4.3 (final p-adic interpolation).

We begin by collecting in §2 various classical results on modular forms and
elliptic functions that we need, including a recursion, essentially due to Jacobi
and Weierstrass, for the Taylor coefficients of θ. The reader should compare this
recursion with the ones in [15].

In a way, the main theme underlying the whole paper is the heat equation, which
allows us to pass from the modular variable (z in the upper-half plane) to the elliptic
variable (u ∈ C).

1.1. Acknowledgments. We would like to thanks N. Katz for his help with the
theory of p-adic modular forms.

2. Preliminaries

2.1. Classical Modular Forms. We will consider functions f of pairs of complex
numbers (ω1, ω2) with =(ω2/ω1) > 0. We say that such a function has weight k ∈ Z
if

f(λω1, λω2) = λ−kf(ω1, ω2), for all non-zero λ ∈ C.

We let Sl2(R) act on (ω1, ω2) via

(ω1, ω2) 7→ (aω1 + bω2, cω1 + dω2), for
(
a b
c d

)
∈ Sl2(R).

A function invariant by Sl2(Z) depends then only on the lattice L = [ω1, ω2] ⊂ C.
A C∞ function f(ω1, ω2) fixed by (ω1, ω2) 7→ (ω1, ω2 + ω1) has a Fourier expan-

sion
f(2πi, 2πiz) =

∑
n∈Z

an(y)qn, =(z) > 0, q = e2πiz.

This is the usual q-expansion (at i∞) if f is holomorphic, in which case the an(y)’s
are simply constants, and if in addition, f is also holomorphic at i∞ then the an’s
are zero for n < 0. Any f of weight k ∈ Z may be recovered from its expansion via

f(ω1, ω2) =
(

2πi
ω1

)k ∑
n∈Z

an(y)qn, where z = ω2/ω1 and q = e2πiz.

In particular, a classical modular form of weight k on a subgroup of Sl2(Z) gives
rise to a holomorphic function f(ω1, ω2) of weight k invariant by that subgroup.

Given (ω1, ω2) with =(ω2/ω1) > 0 we let L = [ω1, ω2] ⊂ C be the associated
lattice and define

A(L) =
1
π

Area(C/L) = (ω2ω̄1 − ω̄2ω1)/2πi, (2.1)

We let W be the differential operator acting on C∞ functions of (ω1, ω2) by

W =
−1
A(L)

(ω̄1
∂

∂ω1
+ ω̄2

∂

∂ω2
). (2.2)
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It does not preserve holomorphicity but does preserve the action of Sl2(R) and
sends functions of weight k to functions of weight k+ 2. Moreover, if f(ω1, ω2) has
weight k ∈ Z then (Wf)(2πi, 2πiz) = ∂k(f(2πi, 2πiz)), where ∂k is the differential
operator (acting on C∞ functions of the upper-half plane)

∂ = ∂k =
1

2πi
d

dz
− k

4πy
, y = =(z) > 0, (2.3)

(notice that A([2πi, 2πiz]) = 4πy).

2.2. Formulaire Elliptique. We recall various facts from the classical theory of
elliptic functions. Our basic reference will be chapter VI of Jordan’s book Cours
d’Analyse [7].

Given a lattice L ⊂ C we have the Weierstrass functions

σ(u, L) = u
∏

ω∈L\{0}

(1− u

ω
)e

u
ω + u2

2ω2 , u ∈ C

ζ = σ′/σ, and ℘ = −ζ ′, where prime indicates d/du. The function σ has weight −1
in the sense that

σ(λu, λL) = λσ(u, L), for all non-zero λ ∈ C. (2.4)

We let

s2(L) = lim
s→0+

∑
ω∈L\{0}

1
ω2 | ω |2s

,

g2(L) = 60
∑

ω∈L\{0}

1
ω4
, and g3(L) = 140

∑
ω∈L\{0}

1
ω6
,

of weights 2, 4 and 6 respectively. It turns out that s2 is not holomorphic while g2
and g3 clearly are.

Given (ω1, ω2) with =(ω2/ω1) > 0 we consider the associated lattice L = [ω1, ω2],
and define ηj = ζ(u+ ωj , L)− ζ(u, L) for j = 1, 2. We let z = ω2/ω1 = x+ iy and
q = e2πiz.

Remark 2.1. The definition of s2 is due to Hecke [5, 468-474] and does not appear
in [7]. We only need to know that

s2(L) =
η1
ω1

+ (
2πi
ω1

)2
1

4πy
. (2.5)

We let D be the differential operator acting on C∞ functions of (ω1, ω2) by

D = −2(η1
∂

∂ω1
+ η2

∂

∂ω2
). (2.6)

Notice that D, unlike W , preserves analyticity. It also preserves the action of
Sl2(R) and sends functions of weight k to functions of weight k + 2; in fact, if f
has weight k then

Wf =
1
2
Df − ks2f. (2.7)

We have

Dg2 = 12g3, Dg3 =
2
3
g2
2 , Ds2 = 2s22 +

1
6
g2,
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and

Dσ = σ′′ +
1
12
g2u

2σ. (2.8)

As Jordan shows [7, p. 463] this differential equation for σ is essentially equivalent
to the heat equation.

Finally, we let

θ(u, L) = e−
1
2 s2(L)u2

σ(u, L). (2.9)

As a function of u, θ is odd, entire, and its only zeroes are simple zeroes at points
of L. It satisfies

θ(u+ ω,L) = ±e( 1
2 |ω|

2+uω)/A(L)θ(u, L) (+ if ω ∈ 2L, − if not),

and therefore e−
1
2 |u|

2/A(L) |θ(u, L)| is L-periodic.
We have the following expansions

s2(L) = (
2πi
ω1

)2(
1

4πy
+
−1
12

(1− 24
∞∑

n=1

nqn/(1− qn))), (2.10)

g2(L) = (
2πi
ω1

)4
1
12

(1 + 240
∞∑

n=1

n3qn/(1− qn)), (2.11)

g3(L) = (
2πi
ω1

)6
−1
216

(1− 504
∞∑

n=1

n5qn/(1− qn)), (2.12)

θ(u, L) =
(

2πi
ω1

)−1

e−
1
2

1
4πy v2 ϑ(v, z)

η3(z)
, (2.13)

where

ϑ(v, z) =
∑
n∈Z

(−1)neπi(n+ 1
2 )2ze(n+ 1

2 )v, v =
2πi
ω1

u, (2.14)

and η = eπiz/12
∏∞

n=1(1− qn) is Dedekind’s eta function.

2.3. The Taylor coefficients of θ. We let rn(L) be the n-th Taylor coefficient of
θ about u = 0; precisely,

θ(u, L) =
∞∑

n=0

rn(L)
un

n!
. (2.15)

Notice that rn is identically zero for even n.
For odd n, the Fourier expansion of rn is of the form

∑∞
m=0 a

(n)
m (y)qm, where

a
(n)
m is a polynomial in 1/4πy with rational coefficients and degree (n − 1)/2. Let
a
(n)
m,0 be the constant term of this polynomial, then it is not hard to see from (2.13)

that
∞∑

m=0

a
(n)
m,0q

m =
1

2n−1

∑∞
m=0(−1)m(2m+ 1)nq

1
2 m(m+1)∏∞

m=1(1− qm)3
, n odd

(2.16)

(this is, in fact, the p-adic q-expansion of rn). In particular, 2n−1a
(n)
m,0 ∈ Z.

By (2.4) rn has weight n− 1 and the same is true of the n-th Taylor coefficient
of σ, which, in contrast to rn however, is holomorphic everywhere (including i∞),
but its q-expansion is only integral outside 2 and 3. It follows that the n-th Taylor
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coefficient of σ is an isobaric polynomial in g2 and g3 of degree n. This together
with the differential equation (2.8) allowed Weierstrass [17, V, p. 38] to give a
simple recursion for these polynomials. However, we want a recursion for the Taylor
coefficients of θ, which are polynomials in s2, g2 and g3. We indicate below one way
of doing this (compare with Jacobi [6, II, p.393]).

Lemma 2.1. Let c be any C∞ function of (ω1, ω2) independent of u. For (ω1, ω2)
with =(ω2/ω1) > 0 let

f(u, ω1, ω2) = ecu2
σ(u, [ω1, ω2]) =

∞∑
n=0

cn(ω1, ω2)
u2n+1

(2n+ 1)!
.

Then f satisfies the differential equation

Df = f ′′ − 4cuf ′ + (4c2 +Dc+
1
12
g2)u2f − 2cf,

where prime means d/du and D is the derivation defined in (2.6). Furthermore,
the Taylor coefficients cn satisfy, and are uniquely determined by, the following
recursion

c0 = 1
c1 = 6c

cn+1 = Dcn + 2c(4n+ 3)cn − (2n+ 1)2n(4c2 +Dc+
1
12
g2)cn−1, for n > 0.

Proof. It follows from a calculation using the differential equation (2.8) that we
leave to the reader. �

Proposition 2.2. Fix a lattice L ⊂ C. Let s2, g2, g3, θ(u) be as in §1.2 and let

θ(u) =
∞∑

n=0

cn
u2n+1

(2n+ 1)!

be the Taylor expansion of θ about u = 0. Let ∆ = g3
2 − 27g2

3, R0 = Z[ 16 , s2,∆],
and R = R0[x, y]/(x3 − 27y2 −∆) with x, y indeterminates. Finally, let D be the
derivation of R/R0 satisfying D(x) = 12y (hence D(y) = 2

3x
2) and let Cn(x, y) ∈ R

be defined recursively by

C0 = 1
C1 = −3s2

Cn+1 = DCn − s2(4n+ 3)Cn − (2n+ 1)2n(s22 +
x

12
)Cn−1, for n > 0.

Then cn = Cn(g2, g3).

Proof. A calculation shows that D(g3
2 − 27g2

3) = 0; now our claim follows from the
previous lemma using c = s2 as a constant. �

Remark 2.2. If we take L = [2πi, 2πz] and let z → i∞ then q → 0 and by the
expansions of §1.2 s2 → −1/12, g2 → 1/12, and g3 → −1/216. Also by (2.16) we
have rn → 1/2n−1 for all n ≥ 0; therefore, if we run the recursion with s2 = −1/12,
and ∆ = 0 we should get Cn(1/12,−1/216) = 1/4n for all n ≥ 0. This can be
easily verified for small n providing a consistency check on our formulas.
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3. Taylor Coefficients of θ and Square Roots of Central Values

In this section we reformulate the main theorem of [15] for the simplest cases
of class number one, showing that the central value L(ψ2k−1, k) is essentially the
square of the (k−1)-st Taylor coefficient of the associated theta function. We start
by recalling various facts about the elliptic curves in question and state the theorem
in (3.5).

3.1. The Elliptic Curves A(l). For a prime l ≡ 3 mod 4 let K = Q(
√
−l) and

let A(l) be the elliptic curve studied by Gross in [3], which has CM by the ring of
integers of K. We will only consider the cases where l > 7 and K has class number
1, namely, l = 11, 19, 43, 67, and 163; the curve A(l) is then defined over Q and
A(l)(Q) ∼= Z.

For the sake of completeness we include a table of minimal models taken directly
from [3, pp. 82, 86]. We use the standard notation for a generalized Weierstrass
model

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

l a1 a2 a3 a4 a6

11 0 -1 1 -7 10
19 0 0 1 -38 90
43 0 0 1 -860 9707
67 0 0 1 -7370 243528

163 0 0 1 -2174420 1234136692

The period lattice of the Neron differential ω = dx/(2y + 1) is

L = ΩRD−1, where D = (
√
−l), (3.1)

and

ΩR =
∫

A(l)(R)

|ω|

is its positive fundamental real period. This period can be given explicitly by

ΩR = (2π)(3−l)/4
∏

0<r<l

( r
l )=1

Γ(r/l) = 2πl1/4 | η(1 +
√
−l

2
) |2, (3.2)

where Γ is the gamma function and η is Dedekind’s eta function. The first formula
is due to Lerch and Chowla-Selberg and the second follows from the fact that the
discriminant of ω is −l3.
A(l) has good reduction everywhere except at l, where it has additive reduction

of Kodaira type III, and hence its conductor is l2.
Let now OK be the ring of integers of K and ψ the unique Hecke character of

K that satisfies

ψ((α)) = ε(α)α, for α ∈ OK prime to l, (3.3)

where ε is the quadratic character of K of conductor D. Then the L-series of
A(l)/Q is L(ψ, s).

We refer the reader to [3] for proofs of the above assertions about the curves
A(l).
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We give below a table of the relevant quantities associated to the lattices (3.1);
for s2, g2 and g3 we used the q-expansions of §1.2 choosing ω1 = ΩR/

√
−l, with ΩR

as in (3.2), and z = (1 +
√
−l)/2; notice that then A(L) = Ω2

R/(2π
√
l). Naturally,

we could also have gotten g2 and g3 directly from the minimal model for A(l).

l s2 g2 g3 ΩR A(L)
11 -2/3 88/3 -847/27 4.80242132 . . . 1.10673668 . . .
19 -2 152 -361 4.19055001 . . . 0.64118800 . . .
43 -12 3440 -38829 2.89054107 . . . 0.20278890 . . .
67 -38 29480 -974113 2.10882279 . . . 0.08646949 . . .

163 -724 8697680 -4936546769 0.79364722 . . . 0.00785201 . . .

Also, if θ(u, L) =
∑∞

n=0 cnu
2n+1/(2n+1)! then, using the recursion of proposition

2.2 with the values of s2, g2 and g3 tabulated above, we get the following values for
cn.

n\ l 11 19 43 67 163
0 1 1 1 1 1
1 2 6 36 114 2172
2 -8 -16 440 6920 3513800
3 14 -186 -19026 -156282 3347376774
4 304 4176 -8352 -34999056 -238857662304
5 -352 -33984 33708960 3991188960 -3941159174330400

Remark 3.1. Notice that the coefficients cn appear to be integers when a priori (by
(2.16)) we expect them to be, at best, in Z[ 12 ]; we will prove this fact in §4.2.

3.2. The Formula. Let ψ be the Hecke character of K defined in (3.3). For any
positive integer k we may consider the L-series L(ψ2k−1, s); it has a functional
equation as s 7→ 2k − s with root number (−1)k. We will be interested in the
central values L(ψ2k−1, k) for even k (by the above considerations these values are
zero for odd k).

Theorem 3.1. Let l = 11, 19, 43, 67, or 163, K = Q(
√
−l), and A(l)/Q the elliptic

curve of §2.1. Let ψ be the Hecke character of K associated to A(l), L the lattice of
periods of a Neron differential on A(l), and ΩR the positive fundamental real period
(these are described in (3.3), (3.1), and (3.2) respectively). Let A(L), θ(u, L), and
rn(L) be as in (2.1), (2.9), and (2.15) respectively, so that

θ(u, L) =
∞∑

n=0

rn(L)
un

n!
, (3.4)

is the Taylor expansion of θ about u = 0. Then
2(k − 1)!

A(L)k−1ΩR
L(ψ2k−1, k) = rk−1(L)2, for all integers k ≥ 1. (3.5)

Proof. Using the expansion for θ in (2.13), it is not hard to see that our claim
follows from the main theorem of [15]; we leave the details of the calculation to the
reader. �

Remark 3.2. It is not very difficult to extend the theorem to all curves A(l) with
l ≡ 3 mod 8 prime (cf. the introduction).
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Remark 3.3. Note that the theorem is trivial for odd k since in that case both sides
of the equation are zero.

Remark 3.4. We may view this result as a sort of abelian version of Waldspurger’s
theorem for these particular cases. That is: not only central values of L-series are
essentially squares of algebraic numbers in a fixed finite extension of Q, but there
are systematic ways of choosing their square roots along certain families so that
they are coefficients in the expansion of a particular sort of function. In the case of
Waldspurger this family is formed by the quadratic twists of the L-series of a fixed
modular form f of integral weight and the systematic choice determined by a form
of half integral weight in Shimura correspondance with f .

In our case the family is given by the L-series of odd powers of a fixed Hecke
character ψ (which we can think as twisting L(ψ, s) by powers of ψ/ψ̄) and the
systematic choice determined by a theta function.

Remark 3.5. The relation between θ(u, L) and values of L-series for CM elliptic
curves via the logarthmic derivative is well known and plays a crucial role in the
arithmetic of these curves. We are not aware of any previous arithmetic interpre-
tation of the Taylor coefficients of θ(u, L) itself.

Remark 3.6. Combining the theorem with the fact that e−
1
2 |u|

2/A(L) |θ(u, L)| is
L-periodic (cf. §2.2) we get the bound L(ψ2k−1, k) ≤ C

√
k, with C a constant

independent of k. This type of bound is the same one gets by applying convexity
arguments to the L-series directly.

4. Interpolation

4.1. P -adic Modular Forms and Theta Measures. We start with a brief dis-
cussion of theta funtions of positive quadratic forms with coefficients. We refer the
reader to [13, ch. VI] for details.

Let (V,Q) be a positive definite quadratic space over Q of dimension 2k, i.e: a
Q vector space V of dimension 2k together with a positive definite quadratic form
Q : V −→ Q, and let B(x, y) = 1

2 (Q(x+y)−Q(x)−Q(y)) be the associated bilinear
form. We consider even integral lattices L ⊂ V of a rank 2k; i.e: lattices of full
rank for which Q(m) is an even integer for every m ∈ L. Given a basis v1, · · · , v2k

of L we form the Gram matrix A = (B(vi, vj)) and define the level of L to be
the least positive integer N such that NA−1 is integral with even diagonal entries
(this does not depend on the choice of basis). Also, we let χ be the character of
Q(

√
(−1)kN)/Q. Then the theta series

ΘQ(z) =
∑
m∈L

q
1
2 Q(m), =(z) > 0, q = e2πiz,

is a modular form of weight k on Γ0(N) with character χ.
Given a function f : L→ C, the series∑

m∈L

f(m)q
1
2 Q(m),

will not in general be a modular form of any level unless f is of a special type, two
typical examples being: (1) f given by congruence conditions (increasing the level
but not the weight), and (2) f a harmonic polynomial with respect to Q (increasing
the weight but not the level).
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In contrast, if we consider the same question p-adically we find that there is no
restriction on f as long as it is continuous, since any such f can be approximated by
functions of type (1). Before stating the precise result we need to introduce some
notation. We refer the reader to [8] and [9] for details on p-adic modular forms and
their use in p-adic interpolations.

For the rest of the paper we fix the following: Q̄ an algebraic closure of Q, p a
prime number, Cp the completion of an algebraic closure of Qp and two embeddings
ιp : Q̄ 7→ Cp, and ι∞ : Q̄ −→ C. In what follows we will tacitly use these
embeddings to pass to and from complex and p-adic settings. We let O be the ring
of integers of Cp.

Let A = Q̄
⋂
ι−1
p (O) and for integers k and N , with N ≥ 1 prime to p, let

Mk(Γ1(Np∞), A) be the space of true modular forms of weight k on Γ1(Npn) for
some n ≥ 0, which are defined over A in the sense of Katz [8, 2.4]. Concretely,
these correspond (via ι∞ on q-expansions) to classical modular forms of weight k
on Γ1(Npn) for some n ≥ 0 whose q-expansion (at i∞) have coefficients in ι∞(A).

There is an inclusion of Mk(Γ1(Np∞), A) into V, the full ring of Katz’ modular
forms on Γ1(N) with coefficients in O, which preserves q-expansions (via ιp). We let
Mk(Γ1(Np∞),O) be the closure of Mk(Γ1(Np∞), A) in V (the inherited topology
is then that of uniform limits of q-expansions).

We may now turn to the theorem, which was inspired by a similar statement in
[14, 2.2.1].

Theorem 4.1. Let p, O and Mk(Γ1(Np∞),O) be as above, with N ≥ 1 prime to
p. Let (V,Q) be a positive definite quadratic space over Q of dimension 2k, L ⊂ V
a (positive definite) even integral lattice of rank 2k and level N . Let Lp = L

⊗
Zp

and Cont (Lp,O) the space of continuous functions on Lp with values in O. Then
the following map defines a continuous linear map and hence a measure on Lp with
values in Mk(Γ1(Np∞),O).

Cont (Lp,O) −→ Mk(Γ1(Np∞),O)

f 7→
∑

m∈L f(m)q
1
2 Q(m).

Proof. It suffices to approximate f by locally constant A-valued functions (recall
that A = Q̄

⋂
ι−1
p (O)) and notice that these give forms in Mk(Γ1(Np∞), A). �

We will denote this measure by µL and its value on f by
∫

Lp
fdµL.

Given a triple κ = (E,ϕ, β), consisting of an elliptic curve E, an isomorphism of
formal groups ϕ : Ê −→ Ĝm, and an arithmetic Γ1(N) level structure β, all defined
over O, we may evaluate at κ to obtain a measure µL,κ on Lp with values in O.

4.2. P -adic Factorization Formulas. Now we specialize the results of the last
section to binary lattices. More specifically, let l = 11, 19, 43, 67, or 163 and K ⊂ Q̄
be the quadratic imaginary field of discriminant −l and OK its ring of integers.
The level N of §4.1 will now be l, which we assume is not p. The symbol

√
−l will

always denote that square root of −l in K for which =(ι∞(
√
−l)) > 0. Consider

(K, 2NK/Q) as quadratic space over Q; then OK is an even integral lattice of level
l and rank 2. Let µOK

be the associated measure given by theorem 4.1.
We want to interpret p-adically the factorization formula (25) of [15] as saying

that the measure µOK
evaluated at a particular triple κ splits as the product of

two identical measures. Let us start by recalling the factorization formula.
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For non-negative even integers h we define

Θ(h) =
∑

α∈OK

αhqN(α) ∈ Z[[q]]. (4.1)

Then Θ(h)(z) (with q = e2πiz) is a classical modular form of weight h+ 1 on Γ0(l)
and character

(∗
l

)
(this is a particular case of example (2) of §4.2). Notice that the

q-expansion coefficients of Θ(h) at i∞ are indeed in Z. For odd h we set Θ(h) ≡ 0.

Theorem 4.2. Let l = 11, 19, 43, 67, or 163, K ⊂ Q̄ the imaginary quadratic field
of discriminant −l, and L as in (3.1) the lattice of periods of a Neron differential
of the elliptic curve A(l) of §2.1. For n ≥ 0 let rn = rn(L) be the Taylor coefficients
of θ(u, L) as in (2.15). Then for all non-negative integers j and h,(

2πi
ΩR

)2j+h+1

∂jΘ(h)(
l +

√
−l

2l
) = rjrj+h

√
−l, (4.2)

where Θ(h), ∂, and ΩR are defined in (4.1), (2.3) and (3.2) respectively and
=(
√
−l) > 0.

Proof. This is a restatement of (25) of [15] applied to these cases. �

Corollary 4.3. With the notation of the theorem rj ∈ Z for all j ≥ 0.

Proof. On one hand, the recursion of §2.4 shows that rj is integral outside 2 and
3. On the other, we can rewrite (4.2) for j = 1 in the homogeneous form (see §1.1)

WΘ(k)(ΩR,ΩR
l +

√
−l

2l
) = rk+1

√
−l,

since r1 = 1 in all cases; then the cohomological description of the operator W (see
[8, IV]) guarantees that rk+1 is integral outside l proving that rj ∈ Z as claimed.

Concretely, we may decompose the operator W (in its non-homogeneous form
(2.3)) as:

∂k = (
1

2πi
d

dz
− kφ) + k(φ− 1

4πy
),

where φ(z) = (rE2(rz) +E2(z))/24, E2(z) = 1− 24
∑∞

n=1 nq
n/(1− qn), q = e2πiz,

y = =(z) > 0, and r is an auxiliary prime (compare with (2.7)). We then verify
our claim using the values of s2(L) of §3.1 and chosing r appropiately. We leave
the details to the reader. �

Remark 4.1. We should point out that this corollary is not entirely trivial. There is
no a priori reason why the powers of 2 in the denominator of the Fourier expansion
of rn(L) (cf. (2.16)) should cancel out (and indeed they do not for the curve A(7)
for example). The reason they do is probably related to the fact that for primes
inert in K the valuations of values of modular forms typically grows along families.
On the other hand, our proof works because the theorem relates rj to values of
other modular forms, which do have integral q-expansions.

Recall that ω is a Neron differential on A(l) with period lattice L. The choice of
basis ΩR[1, (l +

√
−l)/2l] of L determines an arithmetic Γ1(l) structure β on A(l),

defined over Z[1/l, ζl], where ζl ∈ Q̄ is a primitive l-th root of unity (see [8, chap.
II]).

From now on we assume that A(l) has good ordinary reduction at p or, equiv-
alently, that p splits in K = Q(

√
−l), so that, in particular, p > 2. We let
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P = ι−1
p (pO) ∩ OK be one of the primes of K above p and π = ψ(P) the gen-

erator of P given by the Hecke character ψ of (3.3); the other prime is then P̄, with
generator π̄ = ψ(P̄).

Let K∞ ⊂ Q̄ be the union of the ray class fields of K of conductor lP̄n for
some n ≥ 0, K∞

P be its completion in Cp, and O∞
P be the ring of integers of K∞

P .
Finally, let σ ∈ Gal(K∞/K) be the Artin symbol at P; it induces the Frobenius
automorphism of K∞

P /Qp.
We choose an isomorphism of formal groups over O∞

P

ϕ : Â(l) −→ Ĝm,

and let c be the associated p-adic period; i.e: c ∈ O∞×
P is such that the pull-back

via ϕ of the standard differential on Ĝm is cω, then

cσ−1 = π̄. (4.3)

See [8, 8.3] for this setup.
We have now a triple κ = (A(l), ϕ, β) over O∞

P ⊂ O at which we can evaluate
the measure µOK

obtaining the measure µOK ,κ. It will be convenient to consider
instead the measure µOK ,κ/

√
−l (whose value on a function is that of µOK ,κ divided

by
√
−l).

Finally, we choose an isomorphism ν : OK

⊗
Zp −→ Zp

⊕
Zp so that if x, y are

the standard coordinates functions on Zp

⊕
Zp, then for all α ∈ OK , x ◦ ν(α) =

ιp(ᾱ) and y◦ν(α) = ιp(α). To ease the notation we denote by µ∗ and µ respectively
the measures µOK and µOK ,κ/

√
−l transported to Zp

⊕
Zp via ν.

We fix the notation and hypothesis above for the rest of the paper. We can now
reformulate the previous theorem p-adically.

Theorem 4.4. For all non-negative integers j and k we have

cj+k+1

∫
Zp

⊕
Zp

xjykdµ = rjrk. (4.4)

Proof. We may assume that j ≤ k since both sides of (4.4) are symmetric in j and
k. It is easy to check then that∫

Zp

⊕
Zp

xjykdµ∗ = (q
d

dq
)jΘ(k−j),

as modular forms in V, by comparing their q-expansions (via ιp and ι∞). Also, in
homogeneous form (see §1.1), theorem 4.2 gives

W jΘ(k−j)(ΩR,ΩR
l +

√
−l

2l
) = rjrk

√
−l.

Now the theorem follows from the comparison theorem 8.09 and the formula 5.10.1
of [8] by evaluating at the chosen triple κ. �

We immediately get the following corollary.

Corollary 4.5. Let c0 ∈ O× be a square root of c. Then there exists an O-valued
measure µ0 on Zp such that for all non-negative integers j

c2j+1
0

∫
Zp

xjdµ0 = rj , (4.5)
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and
µ = µ0

⊕
µ0,

as measures on Zp

⊕
Zp.

Proof. Given a continuous function f on Zp with values in O we define∫
Zp

f dµ0 = c30

∫
Zp

⊕
Zp

f(x)y dµ.

This clearly gives a well defined measure satisfying (4.5) since r1 = 1 in all cases.
Now the measures µ and µ0

⊕
µ0 agree on all functions xjyk and hence, by Mahler’s

theorem, agree on all f . �

Remark 4.2. The measure is only defined up to ±1 and we found no way of making
a canonical choice.

Remark 4.3. The measure µ∗ is not a product measure; what we have shown is
that it is when evaluated at a particular κ.

4.3. P -adic Interpolation. We fix a choice of c0 as in the above corollary hence
obtaining a choice of measure µ0. In the usual manner, we restrict µ0 to Z×p (still
calling it µ0) to obtain the p-adic interpolation of suitable variants of rj .

Proposition 4.6. Let π and π̄ be the generators of the primes of K above p de-
scribed earlier. Then for all non-negative integers j

c2j+1
0

∫
Z×p

xjdµ0 = (1− π̄−1−jπj)rj . (4.6)

Proof. By definition, ∫
pZp

xjdµ0 = c30

∫
pZp

⊕
Zp

xjy dµ.

On the other hand,∫
pZp

⊕
Zp

xjy dµ∗ = π̄πj
∑

α∈OK

ᾱjα qpN(α)

= π̄πj Frob (
∑

α∈OK

ᾱjα qN(α))

where Frob is the Frobenius map of V ([8, 5.5]). When we evaluate at κ we get
π̄πjc−σ(j+2)rj where σ is the Artin map at P as described in §4.2 ([8, 8.3]). A
calculation using (4.3) gives our claim. �

Remark 4.4. If we let ap = π + π̄ then the proposition implies the following con-
gruences

rj+p−1 ≡ aprj mod p, for all j ≥ 1.

Remark 4.5. If for some prime p > 2, split in Q(
√
−l) we find that rj is not zero

modulo p for j = 1, 3, 5, . . . , p − 2 then the above congruences imply that rj is
non-zero for all odd j. In our case we find that we may take e.g. p = 3, 5, 13, 23, 41
for l = 11, 19, 43, 57, 163 respectively, proving that all r′js under consideration are
in fact non-zero for odd j.
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4.4. P -adic θ. As we mentioned in the introduction there is another way of proving
the interpolation properties of rj , which we describe very briefly now and hope to
investigate further in a future publication.

To give an O-valued measure on Zp is the same as giving a function on the formal
multiplicative group Ĝm over O; given such a function f , the integral of xj against
its associated measure is the value of Djf at the identity (where D is the standard
derivation on Ĝm), see e.g. [9].

The function θ is not a function on the elliptic curve but it turns out that in the
case of good ordinary reduction (and p > 2) it is in fact a function on the formal
group of the curve (see [11] and also [1], [2], [12] and their references). Moreover,
in that case the formal group of the curve is (non-canonically) isomorphic to Ĝm

over O and we may therefore associate a measure to θ whose moments are the rj ’s.
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