COMPUTATION OF CENTRAL VALUE OF QUADRATIC
TWISTS OF MODULAR L-FUNCTIONS

ZHENGYU MAO, FERNANDO RODRIGUEZ VILLEGAS, AND GONZALO
TORNARIA

1. INTRODUCTION

Let f(z) € Sa(p) be a newform of weight two, prime level p. If f(z) =

3 amq™, where ¢ = €™# and D is a fundamental discriminant, we

define the twisted L-function

00 . D
L(f,D,s) = W;amm <m> .

It will be convenient to also allow D = 1 as a fundamental discriminant, in
which case we write simply L(f,s) for L(f,1,s).

In this paper we consider the question of computing the twisted central
values {L(f,D,1) : |D| < x} for some x.

It is well known that the fact that f is an eigenform for the Fricke involu-
tion yields a rapidly convergent series for L(f, D,1). Computing L(f, D, 1)
by means of this series, which we call the standard method, takes time very
roughly proportional to |D| and therefore time very roughly proportional to
22 to compute L(f, D, 1) for |D| < z. We will see that this can be improved
to z3/2 by using an explicit version of Waldspurger’s theorem; this theorem
relates the central values L(f, D, 1) to the | D|-th Fourier coefficient of weight
3/2 modular forms in Shimura correspondence with f.

Concretely, the formulas we use have the basic form

e (IDDI?

Vil
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where x = 1if pt D, x =2 if p| D, kx > 0 is a constant independent of
D and c4(|D|) is | D|-th Fourier coefficient of a certain modular form g4 of
weight 3/2.

Gross [Gr] proves such a formula, and gives an explicit construction of the
corresponding form g_, in the case that L(f,1) # 0 (which holds for about
half of the cases). The purpose of this paper is to extend Gross’s work to
all cases. Specifically, we give an explicit construction of both ¢g_ and g,
regardless of the value of L(f, 1), together with the corresponding values of
k4 in (1.1). The proof of the validity of this construction will be given in a
later publication and relies partly in the results of [B-M].

The construction gives g+ as a linear combination of (generalized) theta
series associated to positive definite ternary quadratic forms. Computing the
Fourier coefficients of these theta series up to x is tantamount to running
over all lattice points in ellipsoid of volume proportional to z3/2. Doing this
takes time roughly proportional to z3/2 which yields our claim above.

This approach to computing L(f, D, 1) has several other advantages over
the standard method. First, the numbers ¢(|D|) are algebraic integers and
are computed with exact arithmetic. Once ¢(|D]) is know it is trivial to
compute L(f, D, 1) to any desired precision. Second, the ¢(D)’s have extra
information; if f has coefficients in Z, for example, (1.1) gives a specific
square root of L(f, D, 1) (if non-zero), whose sign remains a mystery.

Moreover, the actual running time of our method vs. the standard method

is, in practice, significantly better even for small x.

2. CONSTRUCTION OF g (z)

2.1. g_(2): when L(f,1) # 0. We recall Gross’s construction of the map
0.

Let B be the quaternion algebra over Q ramified precisely at co and p.
Let R be a fixed maximal order in B. A right ideal I of R is a lattice in B

that is stable under right multiplication by R. Two right ideals I and J are
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in the same class if J = bl with b € B*. The set of right ideal class is finite;
we denote its order by n and let {Iy,...,I,} be the representatives.

Let R; = {b€ B : bl; C I;} be the left order of I;. Then R; are also
maximal orders in B and each conjugacy class of maximal orders has a

representative R; for some i. Let 2w; be the number of units in R}, then

n 1 _ p-1
=1 w; — 12 °

For b € B, we use N b to denote the reduced norm of b. Let N I; be the

Eichler’s mass formula states >

positive greatest common divisor of {N'b : b € [;}.
Let S; := Z + 2R;, a suborder of index 8 in R;. Let SZQ be the subset of

S; consisting of trace 0 elements. Define

hi(z) = % Z V= % Z ci(m)g™.

beS? m>0

Then h;(z) is a weight 3% form with level 4p and satisfying c;(m) = 0
whenever m = 1,2 mod 4.

As mentioned before ey is a function on the ideal classes I;. Let a; =

ef(I;), then

(2.1) g-(2) = O1(eg) = > aihi(2).

i
2.2. g_(z) and weight functions: L(f,1) = 0 case. When L(f,1) = 0,
we construct g_(z) as follows:
1. Find a prime [ # p such that [ = 1 (mod 4) and L(f,l,1) # 0; in
particular, (%) has to be equal to the sign of the functional equation for
L(f,s). From [B-F-H], there are infinitely many such [.
2. Fix a normalized weight function w; on R, as defined below.

3. Transport w; to weight functions w;(1;,-) on R;, as explained below.

4. Define

hi(z) = % S wi(li,b) ¢V

bes?
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5. Let a; = ef(1;), then

g—(2) = bi(ey) : Zaz

Definition 2.1. Let R be a mazximal order, and fiz a prime l # p. A weight
function w; on R is a nonzero function defined on R°(Z;) (where RV is the

subset of trace zero elements) satisfying the following equations:

(2.2) wi(a™tba) = (./\/;a> wi(b), a € R*(Z;), b € R%(Zy);
(2.3) wi(kb) = (?) wi(b), keZ, be R(Z);
(24) ) = [ et de

Here (x) = ¢"®) where 1(z) € Q satisfies x — 1(x) € Zy; the measures are

normalized so that Z; has volume 1, and

o= z2/ZX (%) W(a/l) da

We say that w; is normalized if wy(b) € {0,41} for allb € RY. A normalized

weight function w; exists and is unique up to sign.

Fix by € R° such that [ | N'bg and by & IR®. Then wj(bg) # 0 for any
weight function w; # 0 on R. We fix w; to be the unique weight function on
R such that wj(bp) = 1. Then w; can be computed by using Algorithm 2.2
below, applied to (R, by).

Let x; € I; be a generator of I; ® Z;, so that xi_lR?(Zl)xi = R%(7Z;) and
Itn;:==Naxa/NI €Z. If b€ RN Z), we set

WL, b) = (7;')wl( Lh ).

This determines a weight function w;([;,-) on R;. Note that we can always
assume [; C R and (#) = 1, in which case we would have RY(Z;) =
RO(Zy) and w1y, ) = wi.
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In any case, by ; := n; x; by l’;l € RY is such that w;(I;,bo;) = wi(by) = 1;

thus wy(f;, ) can also be computed by Algorithm 2.2 applied to (R;, by ),

Algorithm 2.2. Given a pair (R,bp), where R is a maximal order and
bo € RY is such that I | N'by, but by ¢ IR°, this algorithm computes the
unique weight function w; on R° determined by wj(by) = 1.

Input: b € Ryp.

Output: wy(b).

1. If L4 N'b, return 0.

2. If LY N(b+ bo), return (M).

3. Otherwise, there is some k € Z is such that b — k by € [R.

Find such a k&, and return (%)

2.3. g+(2) and weight function. The construction of g4 (z) can be done
as follows:

1. Identify a prime | # p such that [ = 3 mod 4 and L(f,—[,1) # 0; in
particular, — (%l) has to be equal to the sign of the functional equation for
L(f,s). From [B-F-H], there are infinitely many such .

2. Fix a normalized weight function w; on R and transport it to weight
functions wy(l;,-) on R; as in the previous section. Define another weight
function w, on B%(Z,). As S? — SY ® Q, C B%(Z,) for all i, w, can be
regarded as a function on SY.

3. Define

() = 5 3 @ V(b))
beSY

4. Let a; = e¢(I;), then
(2.5) g+(2) = 0_1(ey) := Zaz‘hz‘(z)-

The weight function wy(b) is a function satisfying:
(1) wp is constant mod pZ,,.

(2) wp(a™tba) = [N a,l|pwy(b) for all a € B(Q,) and b € BY(Z,).
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(3) wp(kb) = xp(k)wp(b) for k € Z*, and x, is any fixed odd character of
(Z/p)* considered as a character on Z,, ("odd” means x(—1) = —1).
When Y, is fixed, there is a unique (up to scalar multiple) function satis-

fying the above conditions. Recall [P]
B%Z,) ={b=al +BJ+~IJ : a,3,7€Z,}

where I? = a and J? = b, IJ = —JI; a, b are negative integers satisfying

[a,b], = —1 and [a, b]; = 1 for all primes [ # p. We may assume a is a unit in

Z,, and b generates the prime ideal in Z,. Then w, can be defined as follows:
(1) when « is not a unit in Z,, wy(b) = 0.

(2) when « is a unit in Z,, wy(b) = xp(a).

3. AN EXPLICIT FORMULA

The construction of section 3 singles out, for each [, an explicit form of
weight 3/ for the formula of Theorem 2.2. This follows the construction of
Gross for [ = 1, for which there is a formula with an explicit constant [Gr,

Proposition 13.5]. We can extend it to the case of [ =1 (mod 4).

Proposition 3.1. Let | # p be a prime such that | = 1 (mod 4), and let

—d < 0 be a fundamental discriminant. Then

(f, 1) la@)?
Vil (ef,er)’

where Oy(ef) = > 7, a(n)q”, and where x =1 if pfd, x=2if p|d.

L(f,—d,1)L(f,1,1) =

Proof. We deal here with the case (‘7‘7”) = —land!{d. When (‘le) =+1,
both sides are trivially 0. The remaining cases follow from similar methods,
or from Theorem 2.2.

Consider the divisor

= Z 2; > wi(Tib) (1),

beSY
N b=dl
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It is clear that ¢;(d) = (c,ey), since ([I;],[I;]) = w; by definition of the
height pairing. The pairs (I;,b) where b € S? is such that N'b = dI, modulo
conjugation by the units of R;, give a set of representatives for the special

points of discriminant —dl. Thus

c= ;gwl(m) [x],

where the sum is over the special points x = (I;,b) of discriminant —dl, and
where [z] := [I;].

Let O be the quadratic order of discriminant —d - [, and let x; be the
genus character of Pic(O) corresponding to this discriminant factorization;
namely, if A € Pic(0), then x;(A) := (), where a € A is choosen so that
It N a.

Recall that Pic(O) acts freely on the special points of discriminant —dl,
and since (‘le> = —1 there are exactly two orbits that are permuted by
complex conjugation (see [Gr,§3]). It follows from the definitions that, for
A € Pic(O)

wi(4A-z) = xi(A4) wi(z),

and also that w;(Z) = wi(x) and [Z] = [z]. Consequently, we can write
c=wio) Y xi(A)[A- ),
A€Pic(O)

where zg is a fixed special point of discriminant —dl. Since [ 1 d and wy is
normalized, we have w;(z¢) = %1.

Apply now [Gr, Proposition 11.2] to x;, obtaining the formula

() (e ep)?
Vi (ey.ef)

Since x; is a genus character, we have a decomposition

L(f>lel) =

L(f7Xla 1) = L(f7_d7 1) L(f7l7 1)7

and the result follows. O
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4. EXAMPLES

4.1. 37TA, imaginary twists. Let f = f374, the modular form of level 37
and rank 1. Let B = B(—2,—37), the quaternion algebra ramified precisely
at oo and 37. A maximal order, and representatives for its right ideal classes,

are given by

l4+it+j 243i+k
R=1 = (1,1 1J 2H5+ with V' T} = 1,
2 4
i L
L= (2,9, 1311 6F3i+ with ' I = 2,
2 4
343i4j 6+ith
13:<4,2¢, +2Z+], +;+ > with N I3 = 4.

By computing the Brandt matrices, we find a vector

_ ] = [19]
ef= g

of height (ef,ef) = 14 corresponding to f. Since L(f,1) = 0 we know that
201 (ef) = 61([I3]) — 01([12]) = 0. Indeed, one checks that Ry and R3 are
conjugate, which explains the identity 6 ([I2]) = 01([I3])-

Let now [ = 5. One can compute L(f,5,1) ~ 5.3548616, and thus we
expect f5(ef) to be nonzero. We note that, by the same reason that the
orders are conjugate, we have 05([I3]) = —05([/2]), except now there’s an
extra sign, ultimately coming from the fact that (%7) = —1. Thus, O5(ef) =
05([I3]). A basis for SJ is given by

3t+25+k Ti—25+ k 3i—k
Sg:<b1: 4] 7b2: 4j 7b3: >7

with the norm in this basis (denoting x1b; + x2bs + z3b3 by (21, z2,x3))

N3 (x1, 9, 23) = 1527 4 2023 + 233:% — 8xox3 — 141703 — 471729.
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d|es(d) L(f,—d,1) d|cs(d) L(f,—d,1) d|cs(d) L(f,—d,1)

3 1 2.830621 | 95 0 0.000000 | 139 0 0.000000

4 1 2.451389 | 104 0 0.000000 | 148 -3 7.254107

7 -1 1.853076 | 107 0 0.000000 | 151 -2 1.595930
1

11 1 1.478243 | 111 0.930702 | 152 -2 1.590671
40 2 3.100790 | 115 -6 16.458713 | 155 2 1.575203
47 -1 0.715144 | 120 -2 1.790242 | 159 1 0.388816
67 6 21.562911 | 123 3 3.978618 | 164 -1 0.382843
71 1 0.581853 | 127 1 0.435051 | 184 0 0.000000
83 -1 0.538150 | 132 3 3.840589 | 195 2 1.404381

84 -1 0.534937 | 136 4 6.726557
TABLE 1. Coeflicients of f5(ef) and central values for f = f37a

Choose ws so that ws(by) = +1. Then ws(I3,-) = ws can be computed as

0 if51’N3($1,IE2,$3),

ws (I3, (71, 72,73)) = (22£23) if xp+ 23 #0 (mod 5),

(%1) otherwise.

Table 1 shows the values of ¢5(d) and L(f, —d, 1), where 0 < —d < 200 is

a fundamental discriminant such that (g—?) # —1. The formula

1 if (39) = +1,
cs(d)?
L(fv_dvl):kf) \/g 82 if (%):0,
0 if (52) =-1,
is satisfied, where
_ 25
ks = ~ 4.902778763973580121708449663733...
L(f,5,1)V5

Note that in the case (g—;l) = —1 it is trivial that c5(d) = L(f,—d,1) = 0.
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4.2. 43A, imaginary twists. Let f = f434, the modular form of level 43
and rank 1. Let B = B(—1,—43), the quaternion algebra ramified precisely
at oo and 43. A maximal order, and representatives for its right ideals

classes, are given by

R:11:<111;—J,sz> with NI} = 1,
:< _1+2z+],2+322+k> with A I = 2,
:<3’3i’1+21+372+522+k> with A" Js = 3.
:<3,3¢71+4Z+],4+522+k> with NIy = 3.

By computing the Brandt matrices, we find a vector

_ [La] = [15]
ef = 72

of height {ef,ef) = 14 corresponding to f. We can use | = 5, since

L(f,5,1) ~ 4.8913446 is nonzero. Again, we find 05(ef) = 65([14]); in a

convenient basis of S, the norm is

Ny (21,22, 23) = 1522 + 2322 + 2422 + 122923 + 82123 + 221 2o,
1 2 3

and ws (14, ) = —ws can be computed by
0 if5J(J\/4(ac1,ac2,a:3),
ws (14, (21,72, 23)) = (29”2;3"”3) if 9 # 3 (mod 5),

( %) otherwise.
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d|es(d) L(f,—d,1) d|cs(d) L(f,—d,1) d|cs(d) L(f,—d,1)
3 1 3.148135 | 91 -1 0.571601 | 151 -1 0.443737
7 1 2.060938 | 104 1 0.534684 | 155 -1 0.437974
8 -1 1.927831 | 115 -3 4.576227 | 159 1 0.432430

19 2 5.003768 | 116 -1 0.506273 | 163 7 20.927447
20 -1 1.219267 | 119 -1 0.499851 | 168 -2 1.682749
39 -1 0.873136 | 120 0 0.000000 | 179 -1 0.407556

43 2 6.652268 | 123 -5 12.291402 | 184 -3 3.617825
51 1 0.763535 | 131 0 0.000000 | 191 0 0.000000
55 1 0.735246 | 132 3 4.271393 | 199 0 0.000000
71 0 0.000000 | 136 -1 0.467568

88 3 5.231366 | 148 -4 7.171386
TABLE 2. Coeflicients of f5(ef) and central values for f = fiza

Table 2 shows the values of ¢5(d) and L(f, —d, 1), where 0 < —d < 200 is

a fundamental discriminant such that (Z—g) # —1. The formula

1 if (F2) = +1,
d 2
L(f~d.1) =k S0 i (5 o
0 if () =-1,

is satisfied, where

N0 %)

= 0~ 5.452729672681734385570722785283...
L(f,5,1)v/5

Note that in the case (7&) = —1 it is trivial that e5(d) = L(f, —d,1) = 0.

4.3. 389A, imaginary twist. Let f = f3394, the modular form of level
389 and rank 2. Let B = B(—2,—-389), the quaternion algebra ramified
precisely at oo and 389. A maximal order, with 33 ideal classes, is given by

Cl4i+j 2+43i+k
R=1{1 :
<7’L7 2 ) 4 >




12ZHENGYU MAO, FERNANDO RODRIGUEZ VILLEGAS, AND GONZALO TORNARIA

i a; N; bo.i

1] 1/2] 15,107, 416, -100, -8,-14|2,4,0
2 [-1/2 |15, 104, 415, 104, 2, 4|0, 4,1
3 |-1/2 23,136,203, 68, 2, 8|2 1,4
4| 1/223, 72,407, 72, 10, 20|1,1,0
5 -1/2|31, 51,407, -46,-26,-10| 1,2, 0
6 | 1/2 31,103,204, 56, 20, 18 |2, 0,3
7 | 1/2 39, 128, 160, -116, -8,-36 | 1, 1, 4
8 |-1/2]39, 40,399, 40, 2, 41,01
9 | 1/2 |40, 47,399, 18, 40, 36 |4, 3,0
10 |-1/2 | 47,107, 135, 42, 22, 38 |4, 3, 1
11|-1/2 |56, 84,139, 56, 4, 123, 1,4
12| 1/2]56, 92,151, 76, 52, 44 | 4,2, 3
13| 1/2| 71, 83,132, -16,-12,-70 | 2, 3, 4
14| -1/2 | 71, 103, 124, -36, -64, -66 | 4, 0, 2

TABLE 3. Coeflicients of the ternary forms and of by ;

There is a vector ey of height (e, ef) = % corresponding to f. We can use
I = 5, since L(f, 5, 1) ~ 8.9092552.

We have omitted the 33 ideal classes; however, the computation of 6;(ey)
involves only 14 distinct theta series. In table 3 we give the value of ey and
the coefficients of the norm form N; and of bo,; on choosen bases of S? .

Each row in the table allows one to compute an individual theta series

1 .
hi(z) = 5 > ws (L, bV O/,
bez?

The ternary form corresponding to a sextuple (A1, Ag, Az, Asgs, A13, A12) is

Ni (xl, X2, 133) = A1$% + Agﬂf% + Agﬂjg + A23x2x3 + A13$1$3 + A12$1CC2,
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and the weight function ws(l;,-) is computed as per Algorithm 2.2 applied

to (Z3,bg;). As an example, we show how to compute hi(z). First, we have
N1 (1,19, 23) = 152% + 10723 + 41623 — 1002923 — S8x123 — 142120,
A simple calculation shows that
Ni(z1+ 2,29+ 4,23 +0) = 4z + 329 + 423 (mod 5),
provided that Ny (21,22, 23) =0 (mod 5). Thus, ws can be computed as

0 if 54 N1 (21,22, 23),
ws (I, (21, w2, 03)) = § (ALE3L2H4L3 ) if 4oy 4 329 + 4wz 20 (mod 5),
(%) otherwise,
and we have

h(z) = ¢ —q'2 — ¢+ ¢® + ¢ + ¢ — ¢33 — 262 + O(¢\).

Finally, we combine all of the theta series in
14
O5(cp) = > aihi()
i=1

Table 4 shows the values of ¢5(d) and L(f, —d, 1), where 0 < —d < 200 is

a fundamental discriminant such that (3_—8%) # +1. The formula

is satisfied, where

b 200)

= —————— =~ 7.886950806206592817689630792605...
5L(f,5,1)V5

Note that in the case (g5) = +1 it is trivial that ¢5(d) = L(f, —d, 1) = 0.
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d|ecs(d) L(f,—d,1) d|cs(d) L(f,—d,1) d|cs(d) L(f,—d,1)

3

8
15
23
31
39
40
43
47
o1
56
71

1 4.553533 | 83 -1 0.865705 | 139 -1 0.668962
-1 2.788458 | 84 1 0.860537 | 148 6 23.338921
-1 2.036402 | 88 -4 13.452028 | 151 2 2.567324

1 1.644543 | 103 0 0.000000 | 152 -1 0.639716

1 1.416538 | 104 -1 0.773379 | 155 3 5.701456

1 1.262923 | 107 0 0.000000 | 163 8 39.536232

1 1.247036 | 115 -1 0.735462 | 167 -1 0.610311

-3 10.824738 | 116 -2 2.929140 | 191 1 0.570680
0 0.000000 | 123 3 6.400282 | 195 1 0.564796
-2 4.417576 | 131 1 0.689086 | 199 -1 0.559091

1 1.053938 | 132 -2 2.745884
1 0.936009 | 136 -2 2.705202

TABLE 4. Coeflicients of f5(ef) and central values for f = f3g94

(B-M]
[B-F-H]

[Gr]

[(Wi]

(W2
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