COMPUTATION OF CENTRAL VALUE OF QUADRATIC TWISTS OF MODULAR L−FUNCTIONS

ZHENGYU MAO, FERNANDO RODRÍGUEZ VILLEGAS, AND GONZALO TORNARÍA

1. INTRODUCTION

Let $f(z) \in S_2(p)$ be a newform of weight two, prime level p. If $f(z) =$ $\sum_{m=1}^{\infty} a_m q^m$, where $q = e^{2\pi i z}$, and D is a fundamental discriminant, we define the twisted L-function

$$
L(f, D, s) = \sum_{m=1}^{\infty} a_m m^{-s} \left(\frac{D}{m}\right).
$$

It will be convenient to also allow $D = 1$ as a fundamental discriminant, in which case we write simply $L(f, s)$ for $L(f, 1, s)$.

In this paper we consider the question of computing the twisted central values $\{L(f, D, 1) : |D| \leq x\}$ for some x.

It is well known that the fact that f is an eigenform for the Fricke involution yields a rapidly convergent series for $L(f, D, 1)$. Computing $L(f, D, 1)$ by means of this series, which we call the standard method, takes time very roughly proportional to $|D|$ and therefore time very roughly proportional to x^2 to compute $L(f, D, 1)$ for $|D| \leq x$. We will see that this can be improved to $x^{3/2}$ by using an explicit version of Waldspurger's theorem; this theorem relates the central values $L(f, D, 1)$ to the $|D|$ -th Fourier coefficient of weight $3/2$ modular forms in Shimura correspondence with f.

Concretely, the formulas we use have the basic form

(1.1)
$$
L(f, D, 1) = \kappa E_{\pm} \frac{|c_{\pm}(|D|)|^2}{\sqrt{|D|}}, \quad \text{sign}(D) = \pm,
$$

Key words and phrases. Waldspurger correspondence, Half integral weight forms, Special values of L-functions.

where $\star = 1$ if $p \nmid D$, $\star = 2$ if $p \mid D$, $\kappa_{\pm} > 0$ is a constant independent of D and $c_{\pm}(|D|)$ is |D|-th Fourier coefficient of a certain modular form g_{\pm} of weight 3/2.

Gross [Gr] proves such a formula, and gives an explicit construction of the corresponding form $g_-,$ in the case that $L(f, 1) \neq 0$ (which holds for about half of the cases). The purpose of this paper is to extend Gross's work to all cases. Specifically, we give an explicit construction of both $g_-\,$ and $g_+,$ regardless of the value of $L(f, 1)$, together with the corresponding values of k_{\pm} in (1.1). The proof of the validity of this construction will be given in a later publication and relies partly in the results of [B-M].

The construction gives g_{\pm} as a linear combination of (generalized) theta series associated to positive definite ternary quadratic forms. Computing the Fourier coefficients of these theta series up to x is tantamount to running over all lattice points in ellipsoid of volume proportional to $x^{3/2}$. Doing this takes time roughly proportional to $x^{3/2}$ which yields our claim above.

This approach to computing $L(f, D, 1)$ has several other advantages over the standard method. First, the numbers $c(|D|)$ are algebraic integers and are computed with exact arithmetic. Once $c(|D|)$ is know it is trivial to compute $L(f, D, 1)$ to any desired precision. Second, the $c(D)$'s have extra information; if f has coefficients in \mathbb{Z} , for example, (1.1) gives a specific square root of $L(f, D, 1)$ (if non-zero), whose sign remains a mystery.

Moreover, the actual running time of our method vs. the standard method is, in practice, significantly better even for small x .

2. CONSTRUCTION OF $q_{+}(z)$

2.1. $g_-(z)$: when $L(f, 1) \neq 0$. We recall Gross's construction of the map θ_1 .

Let B be the quaternion algebra over $\mathbb Q$ ramified precisely at ∞ and p. Let R be a fixed maximal order in B. A right ideal I of R is a lattice in B that is stable under right multiplication by R . Two right ideals I and J are in the same class if $J = bI$ with $b \in B^{\times}$. The set of right ideal class is finite; we denote its order by n and let $\{I_1, \ldots, I_n\}$ be the representatives.

Let $R_i = \{b \in B : bl_i \subset I_i\}$ be the left order of I_i . Then R_i are also maximal orders in B and each conjugacy class of maximal orders has a representative R_i for some i. Let $2w_i$ be the number of units in R_i^{\times} , then Eichler's mass formula states $\sum_{i=1}^{n} \frac{1}{w}$ $\frac{1}{w_i} = \frac{p-1}{12}.$

For $b \in B$, we use N b to denote the reduced norm of b. Let N I_i be the positive greatest common divisor of $\{N b : b \in I_i\}.$

Let $S_i := \mathbb{Z} + 2R_i$, a suborder of index 8 in R_i . Let S_i^0 be the subset of S_i consisting of trace 0 elements. Define

$$
h_i(z) = \frac{1}{2} \sum_{b \in S_i^0} q^{\mathcal{N}b} = \frac{1}{2} \sum_{m \ge 0} c_i(m) q^m.
$$

Then $h_i(z)$ is a weight $\frac{3}{2}$ form with level 4p and satisfying $c_i(m) = 0$ whenever $m \equiv 1, 2 \mod 4$.

As mentioned before e_f is a function on the ideal classes I_i . Let $a_i =$ $e_f(I_i)$, then

(2.1)
$$
g_{-}(z) = \theta_{1}(e_{f}) := \sum_{i} a_{i} h_{i}(z).
$$

2.2. $g_-(z)$ and weight functions: $L(f, 1) = 0$ case. When $L(f, 1) = 0$, we construct $g_-(z)$ as follows:

1. Find a prime $l \neq p$ such that $l \equiv 1 \pmod{4}$ and $L(f, l, 1) \neq 0$; in particular, $\left(\frac{l}{r}\right)$ $\frac{1}{p}$ has to be equal to the sign of the functional equation for $L(f, s)$. From [B-F-H], there are infinitely many such l.

- 2. Fix a normalized weight function ω_l on R, as defined below.
- 3. Transport ω_l to weight functions $\omega_l(I_i, \cdot)$ on R_i , as explained below.
- 4. Define

$$
h_i(z) := \frac{1}{2} \sum_{b \in S_i^0} \omega_l(I_i, b) q^{\mathcal{N}b/l}.
$$

5. Let $a_i = e_f(I_i)$, then

$$
g_{-}(z) = \theta_{l}(e_{f}) := \sum_{i} a_{i}h_{i}(z).
$$

Definition 2.1. Let R be a maximal order, and fix a prime $l \neq p$. A weight function ω_l on R is a nonzero function defined on $R^0(\mathbb{Z}_l)$ (where R^0 is the subset of trace zero elements) satisfying the following equations:

(2.2)
$$
\omega_l(a^{-1}ba) = \left(\frac{\mathcal{N}a}{l}\right)\omega_l(b), \ a \in R^{\times}(\mathbb{Z}_l), \ b \in R^0(\mathbb{Z}_l);
$$

(2.3)
$$
\omega_l(kb) = \left(\frac{k}{l}\right)\omega_l(b), \ \ k \in \mathbb{Z}_l^{\times}, \ b \in R^0(\mathbb{Z}_l);
$$

(2.4)
$$
\omega_l(y) = \sigma \int_{R^0(\mathbb{Z}_l)} \omega_l(x) \psi(\text{Tr}(xy)/l) dx.
$$

Here $\psi(x) = q^{\iota(x)}$ where $\iota(x) \in \mathbb{Q}$ satisfies $x - \iota(x) \in \mathbb{Z}_l$; the measures are normalized so that \mathbb{Z}_l has volume 1, and

$$
\sigma = l^2 \int_{\mathbb{Z}_l^\times} \left(\frac{a}{l}\right) \psi(a/l) \, da.
$$

We say that ω_l is normalized if $\omega_l(b) \in \{0, \pm 1\}$ for all $b \in R^0$. A normalized weight function ω_l exists and is unique up to sign.

Fix $b_0 \in R^0$ such that $l \mid \mathcal{N} b_0$ and $b_0 \notin lR^0$. Then $\omega_l(b_0) \neq 0$ for any weight function $\omega_l \neq 0$ on R. We fix ω_l to be the unique weight function on R such that $\omega_l(b_0) = 1$. Then ω_l can be computed by using Algorithm 2.2 below, applied to (R, b_0) .

Let $x_i \in I_i$ be a generator of $I_i \otimes \mathbb{Z}_l$, so that $x_i^{-1}R_i^0(\mathbb{Z}_l)x_i = R^0(\mathbb{Z}_l)$ and $l \nmid n_i := \mathcal{N} x / \mathcal{N} I_i \in \mathbb{Z}$. If $b \in R_i^0(\mathbb{Z}_l)$, we set

$$
\omega_l(I_i, b) := \left(\frac{n_i}{l}\right) \omega_l(x_i^{-1} b x_i).
$$

This determines a weight function $\omega_l(I_i, \cdot)$ on R_i . Note that we can always assume $I_i \subseteq R$ and $\left(\frac{\mathcal{N}I_i}{l}\right) = 1$, in which case we would have $R_i^0(\mathbb{Z}_l) =$ $R^0(\mathbb{Z}_l)$ and $\omega_l(I_i,\cdot) = \omega_l$.

In any case, $b_{0,i} := n_i x_i b_0 x_i^{-1} \in R_i^0$ is such that $\omega_l(I_i, b_{0,i}) = \omega_l(b_0) = 1$; thus $\omega_l(I_i, \cdot)$ can also be computed by Algorithm 2.2 applied to $(R_i, b_{0,i}),$

Algorithm 2.2. Given a pair (R, b_0) , where R is a maximal order and $b_0 \in R^0$ is such that $l \mid \mathcal{N}b_0$, but $b_0 \notin lR^0$, this algorithm computes the unique weight function ω_l on R^0 determined by $\omega_l(b_0) = 1$.

Input: $b \in R_0$.

Output: $\omega_l(b)$.

1. If $l \nmid \mathcal{N}$ b, return 0.

2. If $l \nmid \mathcal{N}(b+b_0)$, return $\left(\frac{\mathcal{N}(b+b_0)}{l}\right)$ $\frac{+b_0)}{l}$.

3. Otherwise, there is some $k \in \mathbb{Z}$ is such that $b - k b_0 \in l R^0$. Find such a k, and return $(\frac{k}{l})$ $\frac{k}{l}$.

2.3. $g_{+}(z)$ and weight function. The construction of $g_{+}(z)$ can be done as follows:

1. Identify a prime $l \neq p$ such that $l \equiv 3 \mod 4$ and $L(f, -l, 1) \neq 0$; in particular, $-\left(\frac{-l}{n}\right)$ $\frac{-l}{p}$ has to be equal to the sign of the functional equation for $L(f, s)$. From [B-F-H], there are infinitely many such l.

2. Fix a normalized weight function ω_l on R and transport it to weight functions $\omega_l(I_i, \cdot)$ on R_i as in the previous section. Define another weight function ω_p on $B^0(\mathbb{Z}_p)$. As $S_i^0 \mapsto S_i^0 \otimes \mathbb{Q}_p \subset B^0(\mathbb{Z}_p)$ for all i, ω_p can be regarded as a function on S_i^0 .

3. Define

$$
h_i(z) = \frac{1}{2} \sum_{b \in S_i^0} q^{\mathcal{N}b/l} \omega_l(b) \omega_p(b).
$$

4. Let $a_i = e_f(I_i)$, then

(2.5)
$$
g_{+}(z) = \theta_{-l}(e_f) := \sum_{i} a_i h_i(z).
$$

The weight function $\omega_p(b)$ is a function satisfying:

- (1) ω_p is constant mod $p\mathbb{Z}_p$.
- (2) $\omega_p(a^{-1}ba) = [\mathcal{N}a, l]_p \omega_p(b)$ for all $a \in B(\mathbb{Q}_p)$ and $b \in B^0(\mathbb{Z}_p)$.

(3) $\omega_p(kb) = \chi_p(k)\omega_p(b)$ for $k \in \mathbb{Z}^\times$, and χ_p is any fixed odd character of $(\mathbb{Z}/p)^{\times}$ considered as a character on \mathbb{Z}_p^{\times} , ("odd" means $\chi(-1) = -1$).

When χ_p is fixed, there is a unique (up to scalar multiple) function satisfying the above conditions. Recall [P]

$$
B^{0}(\mathbb{Z}_{p}) = \{b = \alpha I + \beta J + \gamma IJ : \alpha, \beta, \gamma \in \mathbb{Z}_{p}\}\
$$

where $I^2 = a$ and $J^2 = b$, $IJ = -JI$; a, b are negative integers satisfying $[a, b]_p = -1$ and $[a, b]_l = 1$ for all primes $l \neq p$. We may assume a is a unit in \mathbb{Z}_p and b generates the prime ideal in \mathbb{Z}_p . Then ω_p can be defined as follows:

(1) when α is not a unit in \mathbb{Z}_p , $\omega_p(b) = 0$.

(2) when α is a unit in \mathbb{Z}_p , $\omega_p(b) = \chi_p(\alpha)$.

3. An explicit formula

The construction of section 3 singles out, for each l, an explicit form of weight $\frac{3}{2}$ for the formula of Theorem 2.2. This follows the construction of Gross for $l = 1$, for which there is a formula with an explicit constant [Gr, Proposition 13.5]. We can extend it to the case of $l \equiv 1 \pmod{4}$.

Proposition 3.1. Let $l \neq p$ be a prime such that $l \equiv 1 \pmod{4}$, and let $-d < 0$ be a fundamental discriminant. Then

$$
L(f, -d, 1) L(f, l, 1) = \star \frac{\langle f, f \rangle}{\sqrt{dl}} \frac{|c_l(d)|^2}{\langle e_f, e_f \rangle},
$$

where $\theta_l(e_f) = \sum_{n=1}^{\infty} c_l(n)q^n$, and where $\star = 1$ if $p \nmid d$, $\star = 2$ if $p \mid d$.

Proof. We deal here with the case $\left(\frac{-dl}{n}\right)$ $\left(\frac{-dl}{p}\right) = -1$ and $l \nmid d$. When $\left(\frac{-dl}{p}\right)$ $\left(\frac{-dl}{p}\right) = +1,$ both sides are trivially 0. The remaining cases follow from similar methods, or from Theorem 2.2.

Consider the divisor

$$
c := \sum_{i} \frac{1}{2w_i} \sum_{\substack{b \in S_i^0 \\ \mathcal{N}b = dl}} \omega_l(I_i, b) [I_i].
$$

It is clear that $c_l(d) = \langle c, e_f \rangle$, since $\langle [I_i], [I_i] \rangle = w_i$ by definition of the height pairing. The pairs (I_i, b) where $b \in S_i^0$ is such that $\mathcal{N} b = d_l$, modulo conjugation by the units of R_i , give a set of representatives for the special points of discriminant $-dl$. Thus

$$
c = \frac{1}{2} \sum_{x} \omega_l(x) [x],
$$

where the sum is over the special points $x = (I_i, b)$ of discriminant $-dl$, and where $[x] := [I_i].$

Let $\mathcal O$ be the quadratic order of discriminant $-d \cdot l$, and let χ_l be the genus character of $Pic(\mathcal{O})$ corresponding to this discriminant factorization; namely, if $A \in Pic(\mathcal{O})$, then $\chi_l(A) := \left(\frac{\mathcal{N} \mathfrak{a}}{l}\right)$, where $\mathfrak{a} \in A$ is choosen so that $l \nmid \mathcal{N}$ a.

Recall that Pic (\mathcal{O}) acts freely on the special points of discriminant $-dl$, and since $\left(\frac{-dl}{n}\right)$ $\left(\frac{p}{p}\right)$ = -1 there are exactly two orbits that are permuted by complex conjugation (see [Gr,§3]). It follows from the definitions that, for $A \in Pic(\mathcal{O})$

$$
\omega_l(A \cdot x) = \chi_l(A) \,\omega_l(x),
$$

and also that $\omega_l(\overline{x}) = \omega_l(x)$ and $|\overline{x}| = |x|$. Consequently, we can write

$$
c = \omega_l(x_0) \sum_{A \in \text{Pic}(\mathcal{O})} \chi_l(A) [A \cdot x_0],
$$

where x_0 is a fixed special point of discriminant $-dl$. Since $l \nmid d$ and ω_l is normalized, we have $\omega_l(x_0) = \pm 1$.

Apply now [Gr, Proposition 11.2] to χ_l , obtaining the formula

$$
L(f, \chi_l, 1) = \frac{\langle f, f \rangle}{\sqrt{dl}} \frac{\langle c, e_f \rangle^2}{\langle e_f, e_f \rangle}.
$$

Since χ_l is a genus character, we have a decomposition

$$
L(f, \chi_l, 1) = L(f, -d, 1) L(f, l, 1),
$$

and the result follows. \Box

4. Examples

4.1. **37A, imaginary twists.** Let $f = f_{37A}$, the modular form of level 37 and rank 1. Let $B = B(-2, -37)$, the quaternion algebra ramified precisely at ∞ and 37. A maximal order, and representatives for its right ideal classes, are given by

$$
R = I_1 = \left\langle 1, i, \frac{1+i+j}{2}, \frac{2+3i+k}{4} \right\rangle \qquad \text{with } \mathcal{N} I_1 = 1,
$$

$$
I_2 = \left\langle 2, 2i, \frac{1+3i+j}{2}, \frac{6+3i+k}{4} \right\rangle \qquad \text{with } \mathcal{N} I_2 = 2,
$$

$$
I_3 = \left\langle 4, 2i, \frac{3+3i+j}{2}, \frac{6+i+k}{2} \right\rangle \qquad \text{with } \mathcal{N} I_3 = 4.
$$

By computing the Brandt matrices, we find a vector

$$
e_f = \frac{[I_3] - [I_2]}{2}
$$

of height $\langle e_f, e_f \rangle = \frac{1}{2}$ corresponding to f. Since $L(f, 1) = 0$ we know that $2\theta_1(e_f) = \theta_1([I_3]) - \theta_1([I_2]) = 0$. Indeed, one checks that R_2 and R_3 are conjugate, which explains the identity $\theta_1([I_2]) = \theta_1([I_3])$.

Let now $l = 5$. One can compute $L(f, 5, 1) \approx 5.3548616$, and thus we expect $\theta_5(e_f)$ to be nonzero. We note that, by the same reason that the orders are conjugate, we have $\theta_5([I_3]) = -\theta_5([I_2])$, except now there's an extra sign, ultimately coming from the fact that $\left(\frac{37}{5}\right)$ $\frac{37}{5}$) = -1. Thus, $\theta_5(e_f)$ = $\theta_5([I_3])$. A basis for S_3^0 is given by

$$
S_3^0 = \left\langle b_1 = \frac{3i + 2j + k}{4}, \ b_2 = \frac{7i - 2j + k}{4}, \ b_3 = \frac{3i - k}{2} \right\rangle,
$$

with the norm in this basis (denoting $x_1b_1 + x_2b_2 + x_3b_3$ by (x_1, x_2, x_3))

$$
\mathcal{N}_3(x_1, x_2, x_3) = 15x_1^2 + 20x_2^2 + 23x_3^2 - 8x_2x_3 - 14x_1x_3 - 4x_1x_2.
$$

TABLE 1. Coefficients of $\theta_5(e_f)$ and central values for $f = f_{37A}$

Choose ω_5 so that $\omega_5(b_1) = +1$. Then $\omega_5(I_3, \cdot) = \omega_5$ can be computed as

$$
\omega_5(I_3,(x_1,x_2,x_3)) = \begin{cases} 0 & \text{if } 5 \nmid \mathcal{N}_3(x_1,x_2,x_3), \\ \left(\frac{x_2+x_3}{5}\right) & \text{if } x_2+x_3 \not\equiv 0 \pmod{5}, \\ \left(\frac{x_1}{5}\right) & \text{otherwise.} \end{cases}
$$

Table 1 shows the values of $c_5(d)$ and $L(f, -d, 1)$, where $0 < -d < 200$ is a fundamental discriminant such that $\left(\frac{-d}{37}\right) \neq -1$. The formula

$$
L(f, -d, 1) = k_5 \frac{c_5(d)^2}{\sqrt{d}} \cdot \begin{cases} 1 & \text{if } \left(\frac{-d}{37}\right) = +1, \\ 2 & \text{if } \left(\frac{-d}{37}\right) = 0, \\ 0 & \text{if } \left(\frac{-d}{37}\right) = -1, \end{cases}
$$

is satisfied, where

$$
k_5 = \frac{2(f, f)}{L(f, 5, 1)\sqrt{5}} \approx 4.902778763973580121708449663733...
$$

Note that in the case $\left(\frac{-d}{37}\right) = -1$ it is trivial that $c_5(d) = L(f, -d, 1) = 0$.

4.2. 43A, imaginary twists. Let $f = f_{43A}$, the modular form of level 43 and rank 1. Let $B = B(-1, -43)$, the quaternion algebra ramified precisely at ∞ and 43. A maximal order, and representatives for its right ideals classes, are given by

$$
R = I_1 = \left\langle 1, i, \frac{1+j}{2}, \frac{i+k}{2} \right\rangle \qquad \text{with } \mathcal{N} I_1 = 1,
$$

\n
$$
I_2 = \left\langle 2, 2i, \frac{1+2i+j}{2}, \frac{2+3i+k}{2} \right\rangle \qquad \text{with } \mathcal{N} I_2 = 2,
$$

\n
$$
I_3 = \left\langle 3, 3i, \frac{1+2i+j}{2}, \frac{2+5i+k}{2} \right\rangle \qquad \text{with } \mathcal{N} I_3 = 3,
$$

\n
$$
I_4 = \left\langle 3, 3i, \frac{1+4i+j}{2}, \frac{4+5i+k}{2} \right\rangle \qquad \text{with } \mathcal{N} I_4 = 3.
$$

2

By computing the Brandt matrices, we find a vector

$$
e_f = \frac{[I_4]-[I_3]}{2}
$$

of height $\langle e_f, e_f \rangle = \frac{1}{2}$ corresponding to f. We can use $l = 5$, since $L(f, 5, 1) \approx 4.8913446$ is nonzero. Again, we find $\theta_5(e_f) = \theta_5([I_4])$; in a convenient basis of S_4^0 , the norm is

$$
\mathcal{N}_4(x_1, x_2, x_3) = 15x_1^2 + 23x_2^2 + 24x_3^2 + 12x_2x_3 + 8x_1x_3 + 2x_1x_2,
$$

and $\omega_5(I_4, \cdot) = -\omega_5$ can be computed by

$$
\omega_5(I_4,(x_1,x_2,x_3)) = \begin{cases} 0 & \text{if } 5 \nmid \mathcal{N}_4(x_1,x_2,x_3), \\ \left(\frac{2x_2 + 3x_3}{5}\right) & \text{if } x_2 \not\equiv x_3 \pmod{5}, \\ \left(\frac{x_1}{5}\right) & \text{otherwise.} \end{cases}
$$

TABLE 2. Coefficients of $\theta_5(e_f)$ and central values for $f = f_{43A}$

Table 2 shows the values of $c_5(d)$ and $L(f, -d, 1)$, where $0 < -d < 200$ is a fundamental discriminant such that $\left(\frac{-d}{43}\right) \neq -1$. The formula

$$
L(f, -d, 1) = k_5 \frac{c_5(d)^2}{\sqrt{d}} \cdot \begin{cases} 1 & \text{if } \left(\frac{-d}{43}\right) = +1, \\ 2 & \text{if } \left(\frac{-d}{43}\right) = 0, \\ 0 & \text{if } \left(\frac{-d}{43}\right) = -1, \end{cases}
$$

is satisfied, where

$$
k_5 = \frac{2(f, f)}{L(f, 5, 1)\sqrt{5}} \approx 5.452729672681734385570722785283...
$$

Note that in the case $\left(\frac{-d}{43}\right) = -1$ it is trivial that $c_5(d) = L(f, -d, 1) = 0$.

4.3. 389A, imaginary twist. Let $f = f_{389A}$, the modular form of level 389 and rank 2. Let $B = B(-2, -389)$, the quaternion algebra ramified precisely at ∞ and 389. A maximal order, with 33 ideal classes, is given by

$$
R = \left\langle 1, i, \frac{1+i+j}{2}, \frac{2+3i+k}{4} \right\rangle.
$$

$\dot{\imath}$	a_i	${\cal N}_i$	$b_{0,i}$
1	1/2	$15, 107, 416, -100,$ $-8, -14$	2, 4, 0
2	$-1/2$	15, 104, 415, 104, 2, $\overline{4}$	0, 4, 1
3	$-1/2$	23, 136, 203, 68, 2, 8	2, 1, 4
4	1/2	23, 72, 407, 72, 10, 20	1, 1, 0
5	$-1/2$	$31, 51, 407, -46, -26, -10$	1, 2, 0
6	1/2	31, 103, 204, 56, 20, -18	2, 0, 3
7	1/2	39, 128, 160, -116, $-8, -36$	1, 1, 4
8	$-1/2$	40, 399, 40, 2, $\overline{4}$ 39,	1, 0, 1
9	1/2	40, 47, 399, 18, 40, 36	4, 3, 0
10	$-1/2$	47, 107, 135, 42, 22, 38	4, 3, 1
11	$-1/2$	56, 84, 139, 56, 4, 12	3, 1, 4
12	1/2	76, 52, 44 56, 92, 151,	4, 2, 3
13	1/2	83, 132, $-16, -12, -70$ 71,	2, 3, 4
14	$-1/2$	$71, 103, 124, -36, -64, -66$	4, 0, 2

TABLE 3. Coefficients of the ternary forms and of $b_{0,i}$

There is a vector e_f of height $\langle e_f, e_f \rangle = \frac{5}{2}$ corresponding to f. We can use $l = 5$, since $L(f, 5, 1) \approx 8.9092552$.

We have omitted the 33 ideal classes; however, the computation of $\theta_l(e_f)$ involves only 14 distinct theta series. In table 3 we give the value of \boldsymbol{e}_f and the coefficients of the norm form \mathcal{N}_i and of $b_{0,i}$ on choosen bases of S_i^0 .

Each row in the table allows one to compute an individual theta series

$$
h_i(z) = \frac{1}{2} \sum_{b \in \mathbb{Z}^3} w_5(I_i, b) q^{\mathcal{N}_i(b)/5}.
$$

The ternary form corresponding to a sextuple $(A_1, A_2, A_3, A_{23}, A_{13}, A_{12})$ is

$$
\mathcal{N}_i(x_1, x_2, x_3) = A_1 x_1^2 + A_2 x_2^2 + A_3 x_3^2 + A_2 x_2 x_3 + A_1 x_1 x_3 + A_1 x_1 x_2,
$$

and the weight function $\omega_5(I_i, \cdot)$ is computed as per Algorithm 2.2 applied to $(\mathbb{Z}^3, b_{0,i})$. As an example, we show how to compute $h_1(z)$. First, we have

$$
\mathcal{N}_1(x_1, x_2, x_3) = 15x_1^2 + 107x_2^2 + 416x_3^2 - 100x_2x_3 - 8x_1x_3 - 14x_1x_2.
$$

A simple calculation shows that

$$
\mathcal{N}_1(x_1+2, x_2+4, x_3+0) \equiv 4x_1+3x_2+4x_3 \pmod{5},
$$

provided that $\mathcal{N}_1(x_1, x_2, x_3) \equiv 0 \pmod{5}$. Thus, ω_5 can be computed as

$$
\omega_5(I_1,(x_1,x_2,x_3)) = \begin{cases} 0 & \text{if } 5 \nmid \mathcal{N}_1(x_1,x_2,x_3), \\ \left(\frac{4x_1 + 3x_2 + 4x_3}{5}\right) & \text{if } 4x_1 + 3x_2 + 4x_3 \not\equiv 0 \pmod{5}, \\ \left(\frac{x_2}{5}\right) & \text{otherwise}, \end{cases}
$$

and we have

$$
h_1(z) = q^3 - q^{12} - q^{27} + q^{39} + q^{40} + q^{48} - q^{83} - 2q^{92} + O(q^{100}).
$$

Finally, we combine all of the theta series in

$$
\theta_5(e_f) = \sum_{i=1}^{14} a_i h_i(z)
$$

Table 4 shows the values of $c_5(d)$ and $L(f, -d, 1)$, where $0 < -d < 200$ is a fundamental discriminant such that $\left(\frac{-d}{389}\right) \neq +1$. The formula

$$
L(f, -d, 1) = k_5 \frac{c_5(d)^2}{\sqrt{d}} \cdot \begin{cases} 1 & \text{if } \left(\frac{-d}{389}\right) = -1, \\ 2 & \text{if } \left(\frac{-d}{389}\right) = 0, \\ 0 & \text{if } \left(\frac{-d}{389}\right) = +1, \end{cases}
$$

is satisfied, where

$$
k_5 = \frac{2(f, f)}{5L(f, 5, 1)\sqrt{5}} \approx 7.886950806206592817689630792605...
$$

Note that in the case $\left(\frac{-d}{389}\right) = +1$ it is trivial that $c_5(d) = L(f, -d, 1) = 0$.

\boldsymbol{d}	$c_5(d)$	$L(f, -d, 1)$	\boldsymbol{d}	$c_5(d)$	$L(f, -d, 1)$	\overline{d}	$c_5(d)$	$L(f, -d, 1)$
3	$\mathbf{1}$	4.553533	83	-1	0.865705	139	-1	0.668962
8	-1	2.788458	84	1	0.860537	148	6	23.338921
15	-1	2.036402	88	-4	13.452028	151	$\mathbf{2}$	2.567324
23	$\mathbf{1}$	1.644543	103	$\overline{0}$	0.000000	152	-1	0.639716
31	1	1.416538	104	-1	0.773379	155	3	5.701456
39	$\mathbf{1}$	1.262923	107	$\boldsymbol{0}$	0.000000	163	8	39.536232
40	$\mathbf{1}$	1.247036	115	-1	0.735462	167	-1	0.610311
43	-3	10.824738	116	-2	2.929140	191	$\mathbf{1}$	0.570680
47	$\overline{0}$	0.000000	123	3	6.400282	195	$\mathbf{1}$	0.564796
51	-2	4.417576	131	$\mathbf{1}$	0.689086	199	-1	0.559091
56	$\mathbf{1}$	1.053938	132	-2	2.745884			
71	$\mathbf 1$	0.936009	136	-2	2.705202			

14ZHENGYU MAO, FERNANDO RODRÍGUEZ VILLEGAS, AND GONZALO TORNARÍA

TABLE 4. Coefficients of $\theta_5(e_f)$ and central values for $f = f_{389A}$

REFERENCES

- [B-M] Baruch E.M., Mao Z., Central values of automorphic L-functions, preprint.
- [B-F-H] Bump, D., Friedberg, S., Hoffstein, J., Nonvanishing theorems for L-functions of modular forms and their derivatives, Invent. Math. 102 (1990), p. 543-618.
- [Gr] B. Gross, Heights and the special values of L−series, Canadian Math. Soc. Conf. Proceedings, volume 7, (1987) p. 115-187.
- [K] Kohnen W., Fourier coefficients of modular forms of half-integral weight, Math. Annalen 271 (1985), p. 237-268.
- [KZ] Kohnen W., Zagier D., Values of L−series of modular forms at the center of the critical strip, Invent. Math. 64 (1981), p. 175-198.
- [P] Pizer A., An algorithm for computing modular forms on $\Gamma_0(N)$, J. Algebra 64 (1980), p. 340-390.
- [W1] Waldspurger J-L., Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. pures Appl. 60 (1981), p. 375-484.
- [W2] Waldspurger J-L., Correspondances de Shimura et quaternions, Forum Math. 3 (1991), p. 219-307.

Department of Mathematics and Computer Science, Rutgers university, Newark, NJ 07102-1811

 $\it E\mbox{-}mail\;address:$ zmao@andromeda.rutgers.edu

Department of Mathematics, University of Texas at Austin, Austin, TX 78712

 $\it E\mbox{-}mail\;address:$ villegas@math.utexas.edu

 $E\text{-}mail\ address: \ \texttt{tornaria@math}.u \texttt{texas.edu}$