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ZHENGYU MAO, FERNANDO RODRÍGUEZ VILLEGAS, AND GONZALO

TORNARÍA

1. Introduction

Let f(z) ∈ S2(p) be a newform of weight two, prime level p. If f(z) =∑∞
m=1 amq

m, where q = e2πiz, and D is a fundamental discriminant, we

define the twisted L-function

L(f,D, s) =
∞∑

m=1

amm
−s

(
D

m

)
.

It will be convenient to also allow D = 1 as a fundamental discriminant, in

which case we write simply L(f, s) for L(f, 1, s).

In this paper we consider the question of computing the twisted central

values {L(f,D, 1) : |D| ≤ x} for some x.

It is well known that the fact that f is an eigenform for the Fricke involu-

tion yields a rapidly convergent series for L(f,D, 1). Computing L(f,D, 1)

by means of this series, which we call the standard method, takes time very

roughly proportional to |D| and therefore time very roughly proportional to

x2 to compute L(f,D, 1) for |D| ≤ x. We will see that this can be improved

to x3/2 by using an explicit version of Waldspurger’s theorem; this theorem

relates the central values L(f,D, 1) to the |D|-th Fourier coefficient of weight

3/2 modular forms in Shimura correspondence with f .

Concretely, the formulas we use have the basic form

(1.1) L(f,D, 1) = ?κ±
|c±(|D|)|2√

|D|
, sign(D) = ±,

Key words and phrases. Waldspurger correspondence, Half integral weight forms, Spe-

cial values of L-functions.
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where ? = 1 if p - D, ? = 2 if p | D, κ± > 0 is a constant independent of

D and c±(|D|) is |D|-th Fourier coefficient of a certain modular form g± of

weight 3/2.

Gross [Gr] proves such a formula, and gives an explicit construction of the

corresponding form g−, in the case that L(f, 1) 6= 0 (which holds for about

half of the cases). The purpose of this paper is to extend Gross’s work to

all cases. Specifically, we give an explicit construction of both g− and g+,

regardless of the value of L(f, 1), together with the corresponding values of

k± in (1.1). The proof of the validity of this construction will be given in a

later publication and relies partly in the results of [B-M].

The construction gives g± as a linear combination of (generalized) theta

series associated to positive definite ternary quadratic forms. Computing the

Fourier coefficients of these theta series up to x is tantamount to running

over all lattice points in ellipsoid of volume proportional to x3/2. Doing this

takes time roughly proportional to x3/2 which yields our claim above.

This approach to computing L(f,D, 1) has several other advantages over

the standard method. First, the numbers c(|D|) are algebraic integers and

are computed with exact arithmetic. Once c(|D|) is know it is trivial to

compute L(f,D, 1) to any desired precision. Second, the c(D)’s have extra

information; if f has coefficients in Z, for example, (1.1) gives a specific

square root of L(f,D, 1) (if non-zero), whose sign remains a mystery.

Moreover, the actual running time of our method vs. the standard method

is, in practice, significantly better even for small x.

2. Construction of g±(z)

2.1. g−(z): when L(f, 1) 6= 0. We recall Gross’s construction of the map

θ1.

Let B be the quaternion algebra over Q ramified precisely at ∞ and p.

Let R be a fixed maximal order in B. A right ideal I of R is a lattice in B

that is stable under right multiplication by R. Two right ideals I and J are



COMPUTATION OF CENTRAL VALUE 3

in the same class if J = bI with b ∈ B×. The set of right ideal class is finite;

we denote its order by n and let {I1, . . . , In} be the representatives.

Let Ri = {b ∈ B : bIi ⊂ Ii} be the left order of Ii. Then Ri are also

maximal orders in B and each conjugacy class of maximal orders has a

representative Ri for some i. Let 2wi be the number of units in R×i , then

Eichler’s mass formula states
∑n

i=1
1
wi

= p−1
12 .

For b ∈ B, we use N b to denote the reduced norm of b. Let N Ii be the

positive greatest common divisor of {N b : b ∈ Ii}.

Let Si := Z + 2Ri, a suborder of index 8 in Ri. Let S0
i be the subset of

Si consisting of trace 0 elements. Define

hi(z) =
1
2

∑
b∈S0

i

qN b =
1
2

∑
m≥0

ci(m)qm.

Then hi(z) is a weight 3/2 form with level 4p and satisfying ci(m) = 0

whenever m ≡ 1, 2 mod 4.

As mentioned before ef is a function on the ideal classes Ii. Let ai =

ef (Ii), then

(2.1) g−(z) = θ1(ef ) :=
∑

i

aihi(z).

2.2. g−(z) and weight functions: L(f, 1) = 0 case. When L(f, 1) = 0,

we construct g−(z) as follows:

1. Find a prime l 6= p such that l ≡ 1 (mod 4) and L(f, l, 1) 6= 0; in

particular,
(

l
p

)
has to be equal to the sign of the functional equation for

L(f, s). From [B-F-H], there are infinitely many such l.

2. Fix a normalized weight function ωl on R, as defined below.

3. Transport ωl to weight functions ωl(Ii, ·) on Ri, as explained below.

4. Define

hi(z) :=
1
2

∑
b∈S0

i

ωl(Ii, b) qN b/l.
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5. Let ai = ef (Ii), then

g−(z) = θl(ef ) :=
∑

i

aihi(z).

Definition 2.1. Let R be a maximal order, and fix a prime l 6= p. A weight

function ωl on R is a nonzero function defined on R0(Zl) (where R0 is the

subset of trace zero elements) satisfying the following equations:

ωl(a−1ba) =
(
N a

l

)
ωl(b), a ∈ R×(Zl), b ∈ R0(Zl);(2.2)

ωl(kb) =
(
k

l

)
ωl(b), k ∈ Z×l , b ∈ R

0(Zl);(2.3)

ωl(y) = σ

∫
R0(Zl)

ωl(x)ψ(Tr(xy)/l) dx.(2.4)

Here ψ(x) = qι(x) where ι(x) ∈ Q satisfies x − ι(x) ∈ Zl; the measures are

normalized so that Zl has volume 1, and

σ = l2
∫

Z×l

(a
l

)
ψ(a/l) da.

We say that ωl is normalized if ωl(b) ∈ {0,±1} for all b ∈ R0. A normalized

weight function ωl exists and is unique up to sign.

Fix b0 ∈ R0 such that l | N b0 and b0 6∈ lR0. Then ωl(b0) 6= 0 for any

weight function ωl 6= 0 on R. We fix ωl to be the unique weight function on

R such that ωl(b0) = 1. Then ωl can be computed by using Algorithm 2.2

below, applied to (R, b0).

Let xi ∈ Ii be a generator of Ii ⊗ Zl, so that x−1
i R0

i (Zl)xi = R0(Zl) and

l - ni := N x/N Ii ∈ Z. If b ∈ R0
i (Zl), we set

ωl(Ii, b) :=
(ni

l

)
ωl(x−1

i b xi).

This determines a weight function ωl(Ii, ·) on Ri. Note that we can always

assume Ii ⊆ R and
(
N Ii

l

)
= 1, in which case we would have R0

i (Zl) =

R0(Zl) and ωl(Ii, ·) = ωl.
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In any case, b0,i := ni xi b0 x
−1
i ∈ R0

i is such that ωl(Ii, b0,i) = ωl(b0) = 1;

thus ωl(Ii, ·) can also be computed by Algorithm 2.2 applied to (Ri, b0,i),

Algorithm 2.2. Given a pair (R, b0), where R is a maximal order and

b0 ∈ R0 is such that l | N b0, but b0 6∈ lR0, this algorithm computes the

unique weight function ωl on R0 determined by ωl(b0) = 1.

Input: b ∈ R0.

Output: ωl(b).

1. If l - N b, return 0.

2. If l - N (b+ b0), return
(
N (b+b0)

l

)
.

3. Otherwise, there is some k ∈ Z is such that b− k b0 ∈ lR0.

Find such a k, and return
(

k
l

)
.

2.3. g+(z) and weight function. The construction of g+(z) can be done

as follows:

1. Identify a prime l 6= p such that l ≡ 3 mod 4 and L(f,−l, 1) 6= 0; in

particular, −
(
−l
p

)
has to be equal to the sign of the functional equation for

L(f, s). From [B-F-H], there are infinitely many such l.

2. Fix a normalized weight function ωl on R and transport it to weight

functions ωl(Ii, ·) on Ri as in the previous section. Define another weight

function ωp on B0(Zp). As S0
i 7→ S0

i ⊗ Qp ⊂ B0(Zp) for all i, ωp can be

regarded as a function on S0
i .

3. Define

hi(z) =
1
2

∑
b∈S0

i

qN b/lωl(b)ωp(b).

4. Let ai = ef (Ii), then

(2.5) g+(z) = θ−l(ef ) :=
∑

i

aihi(z).

The weight function ωp(b) is a function satisfying:

(1) ωp is constant mod pZp.

(2) ωp(a−1ba) = [N a, l]pωp(b) for all a ∈ B(Qp) and b ∈ B0(Zp).
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(3) ωp(kb) = χp(k)ωp(b) for k ∈ Z×, and χp is any fixed odd character of

(Z/p)× considered as a character on Z×p , (”odd” means χ(−1) = −1).

When χp is fixed, there is a unique (up to scalar multiple) function satis-

fying the above conditions. Recall [P]

B0(Zp) = {b = αI + βJ + γIJ : α, β, γ ∈ Zp}

where I2 = a and J2 = b, IJ = −JI; a, b are negative integers satisfying

[a, b]p = −1 and [a, b]l = 1 for all primes l 6= p. We may assume a is a unit in

Zp and b generates the prime ideal in Zp. Then ωp can be defined as follows:

(1) when α is not a unit in Zp, ωp(b) = 0.

(2) when α is a unit in Zp, ωp(b) = χp(α).

3. An explicit formula

The construction of section 3 singles out, for each l, an explicit form of

weight 3/2 for the formula of Theorem 2.2. This follows the construction of

Gross for l = 1, for which there is a formula with an explicit constant [Gr,

Proposition 13.5]. We can extend it to the case of l ≡ 1 (mod 4).

Proposition 3.1. Let l 6= p be a prime such that l ≡ 1 (mod 4), and let

−d < 0 be a fundamental discriminant. Then

L(f,−d, 1)L(f, l, 1) = ?
〈f, f〉√
dl

|cl(d)|2

〈ef , ef 〉
,

where θl(ef ) =
∑∞

n=1 cl(n)qn, and where ? = 1 if p - d, ? = 2 if p | d.

Proof. We deal here with the case
(
−dl
p

)
= −1 and l - d. When

(
−dl
p

)
= +1,

both sides are trivially 0. The remaining cases follow from similar methods,

or from Theorem 2.2.

Consider the divisor

c :=
∑

i

1
2wi

∑
b∈S0

i
N b=dl

ωl(Ii, b) [Ii].
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It is clear that cl(d) = 〈c, ef 〉, since 〈[Ii], [Ii]〉 = wi by definition of the

height pairing. The pairs (Ii, b) where b ∈ S0
i is such that N b = dl, modulo

conjugation by the units of Ri, give a set of representatives for the special

points of discriminant −dl. Thus

c =
1
2

∑
x

ωl(x) [x],

where the sum is over the special points x = (Ii, b) of discriminant −dl, and

where [x] := [Ii].

Let O be the quadratic order of discriminant −d · l, and let χl be the

genus character of Pic(O) corresponding to this discriminant factorization;

namely, if A ∈ Pic(O), then χl(A) :=
(N a

l

)
, where a ∈ A is choosen so that

l - N a.

Recall that Pic(O) acts freely on the special points of discriminant −dl,

and since
(
−dl
p

)
= −1 there are exactly two orbits that are permuted by

complex conjugation (see [Gr,§3]). It follows from the definitions that, for

A ∈ Pic(O)

ωl(A · x) = χl(A)ωl(x),

and also that ωl(x) = ωl(x) and [x] = [x]. Consequently, we can write

c = ωl(x0)
∑

A∈Pic(O)

χl(A) [A · x0],

where x0 is a fixed special point of discriminant −dl. Since l - d and ωl is

normalized, we have ωl(x0) = ±1.

Apply now [Gr, Proposition 11.2] to χl, obtaining the formula

L(f, χl, 1) =
〈f, f〉√
dl

〈c, ef 〉2

〈ef , ef 〉
.

Since χl is a genus character, we have a decomposition

L(f, χl, 1) = L(f,−d, 1)L(f, l, 1),

and the result follows. �
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4. Examples

4.1. 37A, imaginary twists. Let f = f37A, the modular form of level 37

and rank 1. Let B = B(−2,−37), the quaternion algebra ramified precisely

at∞ and 37. A maximal order, and representatives for its right ideal classes,

are given by

R = I1 =
〈

1, i,
1 + i+ j

2
,
2 + 3i+ k

4

〉
with N I1 = 1,

I2 =
〈

2, 2i,
1 + 3i+ j

2
,
6 + 3i+ k

4

〉
with N I2 = 2,

I3 =
〈

4, 2i,
3 + 3i+ j

2
,
6 + i+ k

2

〉
with N I3 = 4.

By computing the Brandt matrices, we find a vector

ef =
[I3]− [I2]

2

of height 〈ef , ef 〉 = 1/2 corresponding to f . Since L(f, 1) = 0 we know that

2θ1(ef ) = θ1([I3]) − θ1([I2]) = 0. Indeed, one checks that R2 and R3 are

conjugate, which explains the identity θ1([I2]) = θ1([I3]).

Let now l = 5. One can compute L(f, 5, 1) ≈ 5.3548616, and thus we

expect θ5(ef ) to be nonzero. We note that, by the same reason that the

orders are conjugate, we have θ5([I3]) = −θ5([I2]), except now there’s an

extra sign, ultimately coming from the fact that
(

37
5

)
= −1. Thus, θ5(ef ) =

θ5([I3]). A basis for S0
3 is given by

S0
3 =

〈
b1 =

3i+ 2j + k

4
, b2 =

7i− 2j + k

4
, b3 =

3i− k

2

〉
,

with the norm in this basis (denoting x1b1 + x2b2 + x3b3 by (x1, x2, x3))

N 3 (x1, x2, x3) = 15x2
1 + 20x2

2 + 23x2
3 − 8x2x3 − 14x1x3 − 4x1x2.
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d c5(d) L(f,−d, 1) d c5(d) L(f,−d, 1) d c5(d) L(f,−d, 1)

3 1 2.830621 95 0 0.000000 139 0 0.000000

4 1 2.451389 104 0 0.000000 148 -3 7.254107

7 -1 1.853076 107 0 0.000000 151 -2 1.595930

11 1 1.478243 111 1 0.930702 152 -2 1.590671

40 2 3.100790 115 -6 16.458713 155 2 1.575203

47 -1 0.715144 120 -2 1.790242 159 1 0.388816

67 6 21.562911 123 3 3.978618 164 -1 0.382843

71 1 0.581853 127 1 0.435051 184 0 0.000000

83 -1 0.538150 132 3 3.840589 195 2 1.404381

84 -1 0.534937 136 4 6.726557
Table 1. Coefficients of θ5(ef ) and central values for f = f37A

Choose ω5 so that ω5(b1) = +1. Then ω5(I3, ·) = ω5 can be computed as

ω5(I3, (x1, x2, x3)) =


0 if 5 - N 3 (x1, x2, x3),(

x2+x3
5

)
if x2 + x3 6≡ 0 (mod 5),(

x1
5

)
otherwise.

Table 1 shows the values of c5(d) and L(f,−d, 1), where 0 < −d < 200 is

a fundamental discriminant such that
(−d

37

)
6= −1. The formula

L(f,−d, 1) = k5
c5(d)2√

d
·


1 if

(−d
37

)
= +1,

2 if
(−d

37

)
= 0,

0 if
(−d

37

)
= −1,

is satisfied, where

k5 =
2(f, f)

L(f, 5, 1)
√

5
≈ 4.902778763973580121708449663733...

Note that in the case
(−d

37

)
= −1 it is trivial that c5(d) = L(f,−d, 1) = 0.
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4.2. 43A, imaginary twists. Let f = f43A, the modular form of level 43

and rank 1. Let B = B(−1,−43), the quaternion algebra ramified precisely

at ∞ and 43. A maximal order, and representatives for its right ideals

classes, are given by

R = I1 =
〈

1, i,
1 + j

2
,
i+ k

2

〉
with N I1 = 1,

I2 =
〈

2, 2i,
1 + 2i+ j

2
,
2 + 3i+ k

2

〉
with N I2 = 2,

I3 =
〈

3, 3i,
1 + 2i+ j

2
,
2 + 5i+ k

2

〉
with N I3 = 3,

I4 =
〈

3, 3i,
1 + 4i+ j

2
,
4 + 5i+ k

2

〉
with N I4 = 3.

By computing the Brandt matrices, we find a vector

ef =
[I4]− [I3]

2

of height 〈ef , ef 〉 = 1/2 corresponding to f . We can use l = 5, since

L(f, 5, 1) ≈ 4.8913446 is nonzero. Again, we find θ5(ef ) = θ5([I4]); in a

convenient basis of S0
4 , the norm is

N 4 (x1, x2, x3) = 15x2
1 + 23x2

2 + 24x2
3 + 12x2x3 + 8x1x3 + 2x1x2,

and ω5(I4, ·) = −ω5 can be computed by

ω5(I4, (x1, x2, x3)) =


0 if 5 - N 4 (x1, x2, x3),(

2x2+3x3
5

)
if x2 6≡ x3 (mod 5),(

x1
5

)
otherwise.
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d c5(d) L(f,−d, 1) d c5(d) L(f,−d, 1) d c5(d) L(f,−d, 1)

3 1 3.148135 91 -1 0.571601 151 -1 0.443737

7 1 2.060938 104 1 0.534684 155 -1 0.437974

8 -1 1.927831 115 -3 4.576227 159 1 0.432430

19 2 5.003768 116 -1 0.506273 163 7 20.927447

20 -1 1.219267 119 -1 0.499851 168 -2 1.682749

39 -1 0.873136 120 0 0.000000 179 -1 0.407556

43 2 6.652268 123 -5 12.291402 184 -3 3.617825

51 1 0.763535 131 0 0.000000 191 0 0.000000

55 1 0.735246 132 3 4.271393 199 0 0.000000

71 0 0.000000 136 -1 0.467568

88 3 5.231366 148 -4 7.171386
Table 2. Coefficients of θ5(ef ) and central values for f = f43A

Table 2 shows the values of c5(d) and L(f,−d, 1), where 0 < −d < 200 is

a fundamental discriminant such that
(−d

43

)
6= −1. The formula

L(f,−d, 1) = k5
c5(d)2√

d
·


1 if

(−d
43

)
= +1,

2 if
(−d

43

)
= 0,

0 if
(−d

43

)
= −1,

is satisfied, where

k5 =
2(f, f)

L(f, 5, 1)
√

5
≈ 5.452729672681734385570722785283...

Note that in the case
(−d

43

)
= −1 it is trivial that c5(d) = L(f,−d, 1) = 0.

4.3. 389A, imaginary twist. Let f = f389A, the modular form of level

389 and rank 2. Let B = B(−2,−389), the quaternion algebra ramified

precisely at ∞ and 389. A maximal order, with 33 ideal classes, is given by

R =
〈

1, i,
1 + i+ j

2
,
2 + 3i+ k

4

〉
.
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i ai N i b0,i

1 1/2 15, 107, 416, -100, -8, -14 2, 4, 0

2 -1/2 15, 104, 415, 104, 2, 4 0, 4, 1

3 -1/2 23, 136, 203, 68, 2, 8 2, 1, 4

4 1/2 23, 72, 407, 72, 10, 20 1, 1, 0

5 -1/2 31, 51, 407, -46, -26, -10 1, 2, 0

6 1/2 31, 103, 204, 56, 20, 18 2, 0, 3

7 1/2 39, 128, 160, -116, -8, -36 1, 1, 4

8 -1/2 39, 40, 399, 40, 2, 4 1, 0, 1

9 1/2 40, 47, 399, 18, 40, 36 4, 3, 0

10 -1/2 47, 107, 135, 42, 22, 38 4, 3, 1

11 -1/2 56, 84, 139, 56, 4, 12 3, 1, 4

12 1/2 56, 92, 151, 76, 52, 44 4, 2, 3

13 1/2 71, 83, 132, -16, -12, -70 2, 3, 4

14 -1/2 71, 103, 124, -36, -64, -66 4, 0, 2
Table 3. Coefficients of the ternary forms and of b0,i

There is a vector ef of height 〈ef , ef 〉 = 5/2 corresponding to f . We can use

l = 5, since L(f, 5, 1) ≈ 8.9092552.

We have omitted the 33 ideal classes; however, the computation of θl(ef )

involves only 14 distinct theta series. In table 3 we give the value of ef and

the coefficients of the norm form N i and of b0,i on choosen bases of S0
i .

Each row in the table allows one to compute an individual theta series

hi(z) =
1
2

∑
b∈Z3

w5(Ii, b)qN i (b)/5.

The ternary form corresponding to a sextuple (A1, A2, A3, A23, A13, A12) is

N i (x1, x2, x3) = A1x
2
1 +A2x

2
2 +A3x

2
3 +A23x2x3 +A13x1x3 +A12x1x2,
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and the weight function ω5(Ii, ·) is computed as per Algorithm 2.2 applied

to (Z3, b0,i). As an example, we show how to compute h1(z). First, we have

N 1 (x1, x2, x3) = 15x2
1 + 107x2

2 + 416x2
3 − 100x2x3 − 8x1x3 − 14x1x2.

A simple calculation shows that

N 1 (x1 + 2, x2 + 4, x3 + 0) ≡ 4x1 + 3x2 + 4x3 (mod 5),

provided that N 1 (x1, x2, x3) ≡ 0 (mod 5). Thus, ω5 can be computed as

ω5(I1, (x1, x2, x3)) =


0 if 5 - N 1 (x1, x2, x3),(

4x1+3x2+4x3
5

)
if 4x1 + 3x2 + 4x3 6≡ 0 (mod 5),(

x2
5

)
otherwise,

and we have

h1(z) = q3 − q12 − q27 + q39 + q40 + q48 − q83 − 2q92 +O(q100).

Finally, we combine all of the theta series in

θ5(ef ) =
14∑
i=1

aihi(z)

Table 4 shows the values of c5(d) and L(f,−d, 1), where 0 < −d < 200 is

a fundamental discriminant such that
( −d

389

)
6= +1. The formula

L(f,−d, 1) = k5
c5(d)2√

d
·


1 if

( −d
389

)
= −1,

2 if
( −d

389

)
= 0,

0 if
( −d

389

)
= +1,

is satisfied, where

k5 =
2(f, f)

5L(f, 5, 1)
√

5
≈ 7.886950806206592817689630792605...

Note that in the case
( −d

389

)
= +1 it is trivial that c5(d) = L(f,−d, 1) = 0.
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d c5(d) L(f,−d, 1) d c5(d) L(f,−d, 1) d c5(d) L(f,−d, 1)

3 1 4.553533 83 -1 0.865705 139 -1 0.668962

8 -1 2.788458 84 1 0.860537 148 6 23.338921

15 -1 2.036402 88 -4 13.452028 151 2 2.567324

23 1 1.644543 103 0 0.000000 152 -1 0.639716

31 1 1.416538 104 -1 0.773379 155 3 5.701456

39 1 1.262923 107 0 0.000000 163 8 39.536232

40 1 1.247036 115 -1 0.735462 167 -1 0.610311

43 -3 10.824738 116 -2 2.929140 191 1 0.570680

47 0 0.000000 123 3 6.400282 195 1 0.564796

51 -2 4.417576 131 1 0.689086 199 -1 0.559091

56 1 1.053938 132 -2 2.745884

71 1 0.936009 136 -2 2.705202
Table 4. Coefficients of θ5(ef ) and central values for f = f389A
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