
COMPUTING CENTRAL VALUES OF L-FUNCTIONS

1.

How fast can we compute the value of an L-function at the center of the critical
strip?

We will divide this question into two separate questions while also making it
more precise. Fix an elliptic curve E defined over Q and let L(E, s) be its L-series.
For each fundamental discriminant D let L(E,D, s) be the L-series of the twist ED

of E by the corresponding quadratic character; note that L(E, 1, s) = L(E, s).

A. How fast can we compute the central value L(E, 1)?
B. How fast can we compute L(E,D, 1) for D in some interval say a ≤ D ≤ b?

These questions are obviously related but, as we will argue below, are not iden-
tical.

We should perhaps clarify what to compute means. First of all, we know, thanks
to the work of Wiles and others, that L(E, s) = L(f, s) for some modular form f
of weight 2; hence, L(E, s), first defined on the half-plane <(s) > 3/2, extends to
an analytic function on the whole s-plane which satisfies a functional equation as
s goes to 2 − s. In particular, it makes sense to talk about the value L(E, 1) of
our L-function at the center of symmetry s = 1. The same reasoning applies to
L(E,D, s).

As a first approximation to our question we may simply want to know the real
number L(E,D, 1) to some precision given in advance; but we can expect something
better. The Birch–Swinnerton-Dyer conjectures predict a formula of type

(1) L(E,D, 1) = κD m2
D,

for some integer mD and κD an explicit easily computable positive constant. (Up
to the usual fudge factors the conjectures predict that m2

D, if non-zero, should be
the order of the Tate–Shafarevich group of ED.) To compute L(E,D, 1) would then
mean to calculate mD exactly.

In fact, formulas à la Waldspurger have the form (1) with mD the |D|-th coeffi-
cient of a modular form g of weight 3/2 which is in Shimura correspondance with
f . The main point of this note is to discuss informally how explicit versions of such
formulas can be used for problem B above.

Let us also note the interesting fact that mD, being related to the coefficient of
a modular form, typically does not have a constant sign. The significance of the
extra information provided by sgn(mD) remains a tantalizing mystery.

2.

There is a standard analytic method to compute L(E, 1), which we now recall.
If E has conductor N then the associated modular form f has level N and

f |wN
= −εf,
1
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where wN is the Fricke involution and ε is the sign of the functional equation for
L(E, s). Concretely, we have

f
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, make the substitution t 7→ 1/t in the first and
use the functional equation to obtain(
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(This is the classical argument to prove the functional equation of L(E, s) and goes
back to Riemann who used it for his zeta function.)

Now plug in s = 1 to get

(2)
√

N

2π
L(E, 1) = (1 + ε)

∑
n≥1

an

n
e−2πn/

√
N

where f has Fourier expansion

f =
∑
n≥1

an qn, q = e2πiz.

Assume for simplicity that gcd(N,D) = 1. Then the conductor of ED is ND2 and
(2) applied to ED yields, more generally,

(3)
|D|

√
N

2π
L(E,D, 1) = (1 + εD)

∑
n≥1

(
D

n

)
an

n
e−2πn/|D|

√
N ,

with εD the sign in the functional equation of L(E,D, s).
We know that |an| grows no more than polynomially with n (a straightforward

argument gives |an| = O(n)). It follows that for a fixed E and varying D we will
need to take, very roughly, of the order of O(|D|) terms in the sum to obtain a decent
approximation to L(E,D, 1). Assuming the Birch–Swinnerton-Dyer conjectures we
may use (3) to compute m2

D in (1) exactly. However, if we know that mD is the D-th
coefficient of some specific modular form (i.e. we have a formula à la Waldspurger)
we would get |mD| but would not be able to recover sgn(mD).

Using this method to compute, say, L(E,D, 1) for |D| ≤ X would take time
of the order of O(X2). We will see below that using formulas of type (1) we can
reduce this to O(X3/2) for at least some fraction of such D’s.

3.

Before tackling L(E,D, 1) let us consider the case of the special value of an
Eisenstein series of weight 2 (as opposed to a cusp form as we have for L(E,D, 1)).
What follows is meant only as an illustration of the general case.

Let the L-function be L(
(

D
·
)
, s−1)L(

(
D
·
)
, s) with D < 0 the discriminant of an

imaginary quadratic field K. Its value at s = 1 is essentially h(D)2, where h(D) is
the class number of K, and we find an analogue of (1) with h(D) playing the role
of mD. There are many excellent algorithms for computing the class number h(D)
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(see for example [1] chap. 5). Unfortunately, these do not obviously generalize to
the calculation of mD. The main reason for this is that the class group of K is
easy to describe (both its elements and the group operation) in terms of binary
quadratic forms, whereas its elliptic analogue, the Tate-Shafarevich group of ED,
is notoriously intractable.

The standard analytic method of the previous section yields the following formula
(which was known to Lerch, see [2] vol. III, p. 171)

(4) h(D)2 =
w2

D

√
|D|

2π

∑
n≥1

(
D

n

)
σ(n)

n
e−2πn/|D|,

where wD is the number of units in K and σ(n) :=
∑

d|n d is the divisor sum
function. Again, we need to take, roughly, O(|D|) number of terms in the sum to
obtain a reasonable approximation of the left hand side. In this case, we in fact
have an exact formula requiring D terms, namely, Dirichlet’s class number formula

(5) h(D) = − wD

2|D|

|D|−1∑
n=1

n

(
D

n

)
.

Neither one of these formulas is, however, particularly useful for computing h(D) in
practice. On the other hand, it may be worth pointing out that similar arguments
yield the formula [2] vol. III, p. 153.

h(D) = wD

∑
n≥1

(
D

n

)
1

1− (−1)neπn/
√
|D|

, D ≡ 5 mod 8,

with the number of necessary steps now reduced to the order of O(
√
|D|). (Anal-

ogous formulas can be given for D in other congruence classes modulo 8.)
To make the connection to the general case of computing L(E,D, 1) that we are

considering we mention two other possible approaches to computing h(D) that do
generalize.

(I) The first is to follow Gauss and realize ideal classes of K as classes of primitive,
positive definite binary quadratic forms of discriminant D. Each class has a unique
representative Q = (a, b, c) in the standard fundamental domain (what is known as
a reduced form) and we can simply enumerate these. A straightforward algorithm
is as follows: run over values of b with b ≡ D mod 2 and 0 ≤ b ≤

√
|D|/3; for each

b decompose (b2 −D)/4 as ac with 0 < a ≤ c. Add one or two to the total count
as the case may be if gcd(a, b, c) = 1.

Though this algorithm also takes time O(|D|) the constant of proportionality is
very small making the algorithm quite practical. An important point to notice for
our purpose, however, is that if we wanted to compute h(D) for 0 ≤ |D| ≤ X we
may simply run over all triples a, b, c of size at most

√
X/3 checking the necessary

conditions on (a, b, c) for it to be a reduced form. In this way we obtain an algorithm
which will run in time O(X3/2).

(II) The second approach is again to follow Gauss but in a different direction. He
proved that h(D) is related to the number of representations of |D| as a sum of
three squares. One precise form of this relation is the following identity (see [3]
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p.177)

(6) 1
2

∑
x≡y≡z mod 2

qx2+y2+z2
= 1

2 + 12
∑
D

H2(D) q|D|

where D runs through all negative discriminants (i.e. D < 0 and D ≡ 0, 1 mod 4),
and H2 is a variant of the Hurwitz class number (see [3], page 120). (For us it suffices
to know that it is related to h(D); for example for D ≡ 5 mod 8 a fundamental
discriminant we have H2(D) = h(D).)

There are sophisticated techniques for computing the coefficients of the left hand
side, such as convolution which uses the fast Fourier transform to compute products
of q-series. But even a simple enumeration of the lattice points x2+y2+z2 ≤ X, x ≡
y ≡ z mod 2 would again take time O(X3/2).

The two approaches (I) and (II) are of course related; they amount to counting
(in an appropriate sense) the number of representations of D by a certain ternary
quadratic form. In case (I) we count the number of solutions to b2 − 4ac = D
up to SL2(Z)-equivalence; in (II), the number of solutions to |D| = x2 + y2 + z2

with x ≡ y ≡ z mod 2. Note the crucial difference that the ternary quadratic form
involved is indefinite in case (I) and positive definite in case (II).

A more geometrical point of view is to think that we are dealing with Heegner
points. In case (I) we may associate to a primitive positive definite binary quadratic
form Q = (a, b, c) the point zQ = (−b +

√
D)/2a in the upper half plane H. The

respective actions of SL2(Z) on forms and H are compatible; hence, the class of Q
determines a unique (Heegner) point in SL2(Z)\H of discriminant D.

It is a bit less intuitive how to think of Heegner points in case (II) but this
was worked out by Gross [3]. The main ingredient is a positive definite quaternion
algebra B over Q ramified, say, at ∞ and a prime N . Pick a maximal order R of
B and let I1, . . . , In be representatives for the (left) ideal classes of R. Let Ri be
the right order of Ii for i = 1, · · · , n.

Fix an imaginary quadratic field K of discriminant D. Then we can think of a
Heegner point of discriminant D (what Gross calls a special point) as an (optimal)
embedding of the ring of integersOK into some Ri. Eichler has proved that the total
number of such points, each counted up to conjugation by R?

i , is (1 −
(

D
N

)
)h(D).

(In fact, the situation is quite analogous to that of case (I) if we take the indefinite
algebra B = M2(Q) and R = M2(Z).)

For example, if N = 2 then the algebra B is the usual Hamilton quaternions and
we may pick R to be the order discovered by Hurwitz (in standard notation)

R = Z + Zi + Zj + Z 1
2 (1 + i + j + k).

In this case there is only one class of left R-ideals represented by R itself. Hence a
Heegner point is an embedding φ : OK → R.

How do we find such embeddings? The main thing we need is a w ∈ R with
w2 = D. Such a quaternion, because D is a scalar, necessarily has trace t(w) = 0
and norm n(w) = −D and conversely. Elements of trace 0 in R form a rank 3 lattice
and hence n(w) = −D is a representation of D by a certain ternary quadratic form
associated to R. A few congruence conditions are needed to actually produce an
optimal embedding φ out of w but the upshot is that the problem becomes one
about representations of −D by ternary quadratic forms. For example, in the case
N = 2 Eichler’s count of embeddings can be completely encoded in the identity
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(6); the presence of the factor 12 in that formula is due to the fact that this is the
order of R?/± 1. More details on this setup are given below in §4 (II).

4.

We now return to the main case of computing L(E,D, 1) and describe analogues
of cases (I) and (II) of the previous section. These analogues are the remarkable
results of Gross and Zagier.

(I) Let us assume for simplicity that E has conductor a prime N , sign of the
functional equation equal to −1, L′(E, 1) 6= 0, and E(Q) = 〈P0〉. If f is the weight
2 eigenform associated to E then we get a map

(7)
Φ : X0(N) −→ C/L

z 7→ 2πi
∫ z

i∞ f(u) du

where X0(N) is the modular curve of level N and L ⊂ C is a certain lattice of
periods of f . It is known that C/L = E′(C) for some elliptic curve E′/Q isogenous
to E. Since the L-function is unchanged by isogenies we may assume without loss
of generality that E′ = E.

Let K be an imaginary quadratic field of discriminant D < −4 in which N
splits. Choose b∗ ∈ Z such that b2

∗ ≡ D mod N ; this is possible by the assumption
that N splits in K. Note also that N does not divide b∗. We want to consider
Heegner points on X0(N) of discriminant D. To define them concretely choose
representatives Q = (a, b, c) of the h(D) classes of binary quadratic forms with
N | a and b ≡ b∗ mod N . (For example, start with representatives (a, b, c) with
gcd(a,N) = 1 and compose them with the fixed form (N, b∗, (b2

∗ −D)/2N).)
Then zQ := (−b +

√
D)/2/a) ∈ X0(N) is well defined and PD :=

∑
Q Φ(zQ) ∈

E(K). Moreover, complex conjugation fixes PD, by the assumption on the sign of
the functional equation. Hence PD actually is in E(Q) (and is independent of the
choice of b∗).

One consequence of the results of Gross–Zagier is the following [15],[4], [5]. By
our assumption on E(Q) we have PD = mDP0 for some mD ∈ Z and hence

(8) L(E,D, 1) = κDm2
D;

where κD is an explicit easily computable positive constant; i.e. we have a formula
of type (1).

Usually one regards the Gross-Zagier formula as a way to compute a rational
point PD on E whose height is given in terms of L(E,D, 1)L′(E, 1) and hence
obtaining, when this value does not vanish, a confirmation of the predictions of the
Birch–Swinnerton-Dyer conjecture. Here, instead, we are taking the point of view
that the points of E(Q) are known and use the Gross–Zagier formula as a means
to computing L(E,D, 1).

To calculate mD in practice it is better to work on the E(C) = C/L model of
E rather than, say, a Weierstrass equation. Let z0 ∈ C represent, modulo L, the
point P0 ∈ E(Q). We first compute an approximation to

zD :=
∑
Q

∑
n≥1

an

n
e2πinzQ .

Then we solve the linear equation below for integers n1 and n2

zQ = mDz0 + n1ω1 + n2ω2,
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where ω1, ω2 are a basis for L. (In fact, multiplying by 2 if necessary, we may
assume that ω1 ∈ R and ω1 ∈ iR and hence by taking real parts solve only a three
term equation instead.)

The result is a practical and reasonably efficient algorithm for computing mD.
The number mD is the D-th Fourier coefficient of a weight 3/2 modular form g of
level 4N which is in Shimura correspondence with f . It is interesting that we can
compute the Fourier coefficients of g directly without any knowledge of the whole
vector space of modular forms in which g lies; though we do, of course, start by
knowing f itself. (We have only described the calculation for certain D’s but there
is analogous way to get all coefficients.)

Together with my student Ariel Pacetti we implemented the above algorithm in
GP. The corresponding routines can be found at

http://www.ma.utexas.edu/users/villegas/cnt/

under Heegner points.
Here is a sample example. Let E be the curve y2 + y = x3 − x of conductor

N = 37 (this is the elliptic curve over Q of positive rank with smallest conductor).
This case was described in detail in [15]. It is known that E(Q) = 〈(0, 0)〉.
? e=ellinit([0,0,1,-1,0]); anvec=ellan(e,5000);
? for(d=5,100, if(isfundamental(-d) && kronecker(-d,37)==1,

print(-d," ",ellheegnermult(e,-d,[0,0],0,anvec)[1])))

-7 -11 -40 -47 -67 -71 -83 -84 -95
1 -1 -2 1 -6 -1 1 1 0

The first row is D, the second mD (for typographical reasons we transposed the
actual GP output). These values agree, fortunately, with Zagier’s [15] formula (28)
up to a global negative sign.

In our implementation at least the algorithm is not that well suited for computing
L(E,D, 1) for all D < 0 and |D| < X for very large X; for this, it would be better
to adapt (see §5) the ideas of (II) below but these have not been fully implemented
as yet.

(II) Let B over Q be the (unique up to isomorphism) positive definite quaternion
algebra ramified at ∞ and a prime N . Pick a maximal order R of B and let
I1, . . . , In be representatives for the (left) ideal classes of R. Let Ri be the right
order of Ii for i = 1, · · · , n. The class number n of R, in contrast with h(D), has a
simple formula and is roughly of size N/12.

For example, if N ≡ 3 mod 4 we can describe B as the algebra over Q with
generators i, j such that i2 = −1, j2 = −N and ij = −ji. Also in this case we can
take R = Z + Zi + Z 1

2 (1 + j) + Zi1
2 (1 + j).

There are various ways to compute representatives I1, · · · , In of the ideal classes
(for algorithms for quaternion algebras see [11]). If N ≡ 3 mod 4 there is an
algorithm which is completely analogous to that of Gauss §3 (I) for binary quadratic
forms. It exploits the fact that our choice of R has an embedding of Z[i] and hence
allows us to view R-left ideals as rank 2 modules over Z[i]; then classes of R-
ideals correspond to classes of positive definite binary Hermitian forms over Z[i] of
discriminant −N . Instead of H we now need to work on hyperbolic 3-space where,
as it turns out, the action of SL2(Z[i]) has a very simple fundamental domain. This
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yields an algorithm which is almost verbatim that of Gauss for binary forms over
Z. Details can be found in [12].

For example, if N = 11 then there are two classes of positive definite binary
Hermitian forms of discriminant −11 over Z[i]; namely, (1, 1, 3) and (2, 1 + 2i, 2)
corresponding to the two ideals

I0 := R = Z + Zi + Z 1
2 (1 + j) + Zi1

2 (1 + j)

and
I1 := 2Z + Z2i + Z 1

2 (1 + 2i + j) + Zi 1
2 (1 + 2i + j)

representing the n = 2 classes of left R-ideals.
Let VQ be the Q vector space of functions on the set {I0, . . . , In}. For each

m ∈ Z≥0 there is an operator B(m) acting on VQ, the Brandt matrix of order m,
which encodes the number of representations of m by certain quaternary quadratic
forms (see [3] (1.4)). Let B be the algebra generated over Z by all the B(m); it is
commutative and B⊗Z Q is semisimple.

On the other hand, we have the space MC of modular form of weight 2 on Γ0(N)
(known to be of dimension n) and the Hecke operators Tm acting on MC. Let T
be the algebra spanned by the Tm over Z ; like B it is commutative and T⊗Z Q is
semisimple. This algebra preserves the Q vector space MQ ⊂ MC of dimension n
consisting of those modular forms in MC with Fourier coefficients in Q.

These two setups are closely related and indeed we have a special case of the
Jacquet–Langlands correspondence. Eichler proved that Tm and B(m) have the
same trace for all m ∈ N. Hence, by semisimplicity of the algebras the map Tm 7→
B(m) induces a ring isomorphism T ' B. It follows that eigenspaces of VQ and
MQ, under the action of B and T respectively, correspond to each other. Since we
also have multiplicity one these eigenspaces are one-dimensional.

In conclusion, given f =
∑

n≥0 anqn ∈ MC an eigenform for all Hecke operators
Tm (so that Tmf = amf) there is an ef ∈ VQ ⊗Z K unique up to scalars such that
B(m)ef = amef . (Here K denotes the field Q(a0, a1, . . .) generated by the Fourier
coefficients of f .)

In fact, this correspondence gives an efficient way to compute Fourier coefficients
of eigenforms in MC (see [11]). An implementation of the corresponding algorithms
can be found in the above mentioned website (under qalgmodforms). Here is a
sample GP session.

? R=qsetprime(11);

? brandt(R,2)~

[1 3]

[2 0]

? brandt(R,3)~

[2 3]

[2 1]
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The first line defines R as a maximal order in the algebra ramified at 11 and ∞; the
others compute the corresponding Brandt matrices. We find that these matrices
have two eigenvectors: eE = (1/2, 1/3) and ef = (−1, 1) corresponding to an
Eisenstein series and a cusp form, respectively.

The above implementation is intended for small to medium scale computations.
For large scale computations one should use the graph method ideas of Mestre and
Oesterlé [8], which exploit the sparse nature of the Brandt matrices.

Now following Gross we show how to associate a modular form of weight 3/2 to
an eigenvector ef . Let Ri be the right order of Ii and let Li ⊂ Ri be the ternary
lattice defined by

Li : w ∈ Ri, t(w) = 0, w ∈ Z mod 2Ri.

Let gi be the corresponding theta series

gi(τ) := 1
2

∑
w∈Li

qn(w), q = e2πiτ .

Gross [3] prop. 12.9 describes precisely how the D-th coefficient ai(D) of gi relates
to the optimal embeddings of imaginary quadratic orders of Q(

√
D) into Ri.

These theta series are modular forms of weight 3/2 and level 4N and, in fact,
belong to a certain subspace U defined by Kohnen. This subspace is determined by
the condition that the coefficient of qd of a form should be zero unless D := −d is a
discriminant, i.e., D ≡ 0, 1 mod 4, and

(
D
N

)
6= 1. The weight 3/2 Hecke operators

Tm2 preserve U .
Define

g :=
∑

i

ef (i) gi =
∑
D

mD q|D| ∈ U.

This form is identically zero if the sign in the functional equation of f is −1. If g is
non-zero it is a modular form in Shimura correspondence with f ; i.e., Tm2g = amg,
where Tmf = amf . Moreover, we have the Waldspurger formula [3] 13.5

(9) L(f, 1)L(f ⊗ χD, 1) = κf
δD√
|D|

m2
D,

where D is a fundamental discriminant with
(

D
N

)
6= 1, χD is the associated qua-

dratic character, κf > 0 is a constant depending only on f and δD := 2 if N | D
and δD := 1 otherwise.

Finally, let E/Q be an elliptic curve of prime conductor N and sign +1 in its
functional equation. Let f and g be the corresponding modular forms of weight 2
and 3/2 respectively as above. Then if L(f, 1) 6= 0 we obtain from (9) a formula
of type (1) with mD the Fourier coefficient of g. As in §3 (II) to compute mD for
|D| < X we could run through all w ∈ Li with n(w) ≤ X whose total number
is O(X3/2). Again various computational techniques could also be used to speed
up the calculation of mD. Note that in any case all computations are done with
integer arithmetic.

Tables of mD’s for several curves and the routines to compute them can be found
at G. Tornaŕıa’s website
http://www.ma.utexas.edu/users/tornaria/cnt/

among other goodies (an interactive version of Cremona’s tables of elliptic curves
and an interactive table of ternary quadratic forms).



COMPUTING CENTRAL VALUES OF L-FUNCTIONS 9

5.

We conclude with some remarks about the general situation.

1. It follows from (9) that if L(f, 1) = 0 then the form g vanishes identically. In
this case we naturally need to do something else.

In [7] we work out an extension of Gross’s work introducing an auxiliary prime
l; the theta series gi, for example, are modified by introducing an appropriate
weight function. The complexity of algorithms only increase by a factor essentially
proportional to l.

2. If the level N is not prime but square-free the situation is not too different
from the one described above. The downside is that L(E,D, 1) can be computed
this way only for a certain fraction of D’s (determined by local conditions). One
needs to consider a quaternion algebra B ramified at ∞ and at primes l | N for
which the Atkin-Lehner involution acts as f |wl

= −f and an Eichler order in B of
level the product of the remaining primes factors of N .

3. If the level is not square-free things become quite a bit more complicated;
for example, the algebra B of Brandt matrices typically does not act with mul-
tiplicity one and some modular forms are simply missing. The arithmetic of the
corresponding orders, which are no longer Eichler orders in general, also becomes
more involved and, moreover, one needs to consider two types of orders: one for
the weight 2 side and another for the weight 3/2 side; see [9], [10], [14] some work
on this case.

4. To compute twists L(f⊗χl, 1) by real quadratic fields Q(
√

l) one may consider
a twist fD := f ⊗ χD by an auxiliary imaginary quadratic field Q(

√
D) and find

a formula of type (1) for L(fD ⊗ χDl, 1). The form fD typically does not have
square-free level so several corresponding difficulties ensue, see [14].

5. Forms of higher weight can also be handled using quaternion algebras by
introducing harmonic polynomials as weight functions for the theta functions (both
for the ideals Ii corresponding to forms of weight 2+2r and for the ternary lattices
Li corresponding to forms of weight 3/2 + r) see [6], [13].
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