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SQUARE ROOT FORMULAS FOR CENTRAL VALUES OF
HECKE L-SERIES II

FERNANDO RODRIGUEZ VILLEGAS

1. Introduction. This paper is a complement to [8]; we show how the results
proved there can be extended to quadratic imaginary fields K with arbitrary odd
discriminant -d < -3, hence fulfilling, in part, the promise made in [7]. We
consider the central value of the L-series L(@, s) associated to a Hecke character ,
of K that satisfies (see (1))

(()) ()-, for integers of K prime to d.

We show that one can associate to every such @ a well-defined genus fq, and that
the central value L(@, k) equals cll2, where c is a simple normalizing factor and- is a linear combination of values of the (k 1)st nonholomorphic derivative of
a classical half-integral weight theta series, at CM points corresponding to ideals
in f#,. This is our main result (14).
The essential new feature is the analysis of the genus theory involved. For

nonprime discriminants the class number of K is even, and hence we cannot rely
on having squares of ideals in every class as it happened in l-8] and [7].
We have organized the paper as follows: a main part and an appendix. We also

included a list of minor corrections to [8]. In the main part, we set things up in
Section 2, deal with genus theory in Section 3, put together the final formula in
Section 4, after recalling the key ingredients of [8-1, and present some numerical
examples in Section 5. In the appendix we briefly discuss some ideas related to the
factorization formula (12). This sheds some light on how such formulas work; for
example, we show how in general they are truly identities of values holding only on
a finite number of points. It also gives an indication ofmore general formulas, which
we will discuss elsewhere.
We are grateful to the referee for many helpful comments.

2. Basic setup. Let K be an imaginary quadratic field of discriminant -d, with
d > 3, d 3 mod 4, viewed as a subfield of the complex numbers (2. We understand
by x//-d the root with positive imaginary part.

Let 60K be the ring of integers ofK; note that (9 { + 1 }. Unless stated otherwise,
by ideals we will always mean integral ideals. An ideal is primitive if it is not divisible
by rational integers > 1. We let Cl be the class group of K, and Clt2) the subgroup
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of classes annihilated by 2. Any primitive ideal s can be written as

(b +

where a N(s) is the norm of s and b is an integer defined modulo 2a, which
satisfies b2= -d mod 4a. Conversely, given any such pair of numbers a, b, the
above formula gives a primitive ideal of norm a. We denote the class of s by
[s].

Let e be the quadratic character of K of conductor (x//-d). Explicitly, we can
write any # e 60r as # (m + nx//-d)/2, with m, n of the same parity, and then
e(#) (2m/d). Note that for rational integers r, e(r) (-d/r). We define 6 0 or 1
by (d + 1)/4 6 mod 2 or, equivalently, (- 1) e(2).
For any positive integer k we consider Hecke characters of K with values in C

satisfying

#((e)) e(e)e2k-1, for e e (gr prime to d. (1)

We will say that has weight 2k- 1. Clearly, the number of such is h, the
class number ofK, each one with conductor (x/-d). We associate to its L-series

N/

This series converges only for 9t(s) > k + 1/2 but can be analytically continued
to the whole s-plane and satisfies a functional equation under s- 2k s, with root
number (- 1)k/l+. We are interested in its central value L(O, k).

3. Genus theory. We recall some genus theory on K. Each element of Cl<. is
associated to a factorization of the discriminant -d. Given U Cl<2, there are
ideals N1 and fl2 such that (x/-d) Na. fl. and U [N] IN2]. We let d
N() and d2 N(N.), so that d d’d2. We will always choose d 1 mod 4
and d. 3 mod 4, determining them uniquely. Notice that d > 0, d. > 0, and
gcd(d, d2) 1.
We also associate a genus character to every such factorization, defining

gv(C)
\ dl ]’

e C prime to (x/-d). (2)

This map is a homomorphism in each variable. By a genus we understand a set of
ideals of K whose classes lie in a fixed coset of Cl/Clz. Every character
{ + } determines a unique genus consisting of those ideals whose classes C verify
zv(C)" (U) 1 for every U
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Let U C/(2), 1, 2, and d,__2d have the same meaning as above. Choose a
primitive ideal prime to (x/-d) such that 1 (#),/z (md + n-d)/2
with integers m, n of the same parity. Given a character ff of weight 2k 1 as in (1),
we define

0()
(3)

where x/-d > 0. Since 4N() m2d + n2d2 is prime to d, we have that m is prime
to d2 and n is prime to d and therefore ;(,(U) :/: 0. In fact, we have the following.

PROPOSITION A. For any character as in (1), the map

)(.0: Clf2) { d- 1 }

given by (3) is a well-defined homomorphism.

Proof. First notice that the right-hand side of (3) is not changed if we take -#
instead of #. To show the map ;t, is well defined, consider the ideal () instead
of ’, where () is primitive prime to d, and (r + sx/-d)/2, r s mod 2.
Then/z becomes #), (1/2)(m’dl + n’x/-d where m’ (1/2)(rm nsd2) and n’
(msd + rn)/2. We have ((),))= e()),2k-ff(), and so all we need to check is
that e(y)(2m’/d2)(n’/d) (2m/d2)(n/dl). Now e(y) (2r/d), 2m’ =_ rm mod d2, and
4n’ =_ 2rn mod dl and we are done. This proves the definition is independent of the
choice of ideal .

Let us show now that the map is a homomorphism. Suppose we have two
factorizations of d as in the definition of ;to,, say dj and dj’ (j 1, 2). We will denote
by ,’ and ," the different quantities used above associated with each factorization.
First assume that d and d’ are relatively prime and choose ’ and 1" with
relatively prime norms. Let dl d’ d’l’, d2 d/d1 (which is integral because of our
assumption of coprimality), -1,’v,, and "". We then have 1
(#’/z") and choose /z #’#" (rod1 + nx/-d)/2. A calculation shows that m
(m’m"- n’n"d2)/2 and n (m’n"d’l + m"n’d’’)/2. We find that

Zc,(U’)zq,(U"’ (2m’(n’):2m":n"(2m)(n)Z, U’ U" \-2 J \-2 J \-d ,] 2 -d (4)

We need, therefore, to check that the product of symbols on the right-hand side is
equal to 1. From the above expressions for m and n, we find (2m/d2) (m’m"/d2)
and (n/d) (2m’n"/d’’)(2m"n’/d’); so the right-hand side of (4) equals (2m’/d’2d’’d2)
(2m"/dd’l d2) since d’2d’l’d2 d[2 and 2u,1"4""/’ d2 "2"4#2" This proves the claim under
the assumption of coprimality, it is easy to see that the general case reduces to this
one, completing the proof of the proposition. E!

Remark. Note that, for any character b of CI, Z, bZ,, where b here is
restricted to Clt2).
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The proposition allows us to associate to every a genus f9 as indicated at the
beginning of the section.

( (: ;tv([])" Z([U]) 1, for every U e Cl(2)}. (5)

4. Formula for the central value L(, k).
of [8]. For every ideal we let

We first recall notation and formulas

O(z) (J(z) > O, q e2niz), (6)

which is a modular form on Fo(d) of weight one and character e. Applying the
differential operator

(7)

where

1 d r
Or 2hi dz 4ny

(z x + iy, r e R),

to tO, we get a modular form on the same group of weight 2k- 1 and same
character e. The first formula we need is the first in (26) of [8], namely

(2n/x/-d)k 2L(O, k) (- 1)a
(k 1)! t’l,t’lc

(8)

where

b+ x/-d
2ad

with s [a, (b + x/-d)/2], gcd(a, d) 1, b 0 mod d.

(9)

(This number is in the upper half-plane and is determined modulo dZ.)
Consider also the theta series

O,,+/2(z) (2ny)P/z .x H"(nx/2)e’a"/"
odd

(z) > 0, (10)

where

n,,(x) E P!
o<<,,/2 j!(P 2j)!

(- 1}/(2x)"-2
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is the pth Hermite polynomial. To be able to evaluate these series on CM points,
we fix the choice, analogous to (9),

b+ x/-d
2a

with [a, (b + x)/2], gcd(a, 2) 1, b I mod 16,

(11)

which is well defined modulo 8Z.
The second formula we need is the factorization formula (25) of[8] (with h 1).

THEOREM. Let /, z?/1 be two primitive coprime ideals prime to 2d and 2 respec-
tively. Then for every positive inte#er k with k 1 + 6 mod 2, we have

(12)

where O, O, and c3k- are defined in (6), (7), and (10) and -(d) and z in (9) and
(11 ) respectively.

Finally, we prove the following result, which is a direct consequence of a lemma
of Gross and Zagier [2, p. 274].

PROPOSITION B. Let /o, /, /’ be three primitive ideals prime to (x/-d) with
/, /o relatively prime and [o] 6 Cl(2. Let be a character of weight 2k I as in
(1). Then

.(d)(o)--oo,o) xt,o([/’])" x(E’o])"-o,,(z(),

where Zt.1, Zg,, O /, c3 are defined in (2), (3), (6), and (7), respectively.

Proof. Let d d "d2, with d, d2 > 0, relatively prime, dl 1 mod 4, and
d2 3 mod 4, be the factorization associated to [o] as in Section 3. We let 1,
2 be the corresponding ideals dividing d and d2 respectively. Choose b Z such
that b 0 mod d and (1/2)(b + v/ d) o c. Since [o] [], there is a
# (gx such that (#) z’o:; notice that (#) is primitive. It follows that there

isa( ) Sl2(Z), such that

1/2(b + -d)= #1/2(b + x/-d) + fl#a
aoad V#1/2(b + x/-d) + iS#a,

(13)

where a N(z). Since dl, d2 are relatively prime, d21fl. We find that

b + /-d ( fl/d2) o
b + x//- d

2aoad /d2 t 2ad2
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where o denotes the standard action of S/2(Z on the upper half-plane. Using (13),
it is easy to check that gcd(y, dl)= 1 so that gcd(,d2, d)= d2 and d116. Let z
(b + x//-d)/2ad2; then we have

Z + 16 o,(d mod Z and (dl Td2 2) oz Z()o , modZ,

where y’y _= 1 mod dx. Now the proposition follows from lemma (2.3) of 1-2, p. 274]
for k 1 and by applying ok-1 to this case in general. 121

MAIN THEOREM. Let k be a positive integer, a character of weioht 2k 1 as in
(1), c, its associated 9enus as defined in (5), a primitive ideal in f# prime to

(x/C--d), and the number of prime factors of d. Then

L(, k) Ck
2t--1

_ao,, ,,.) (14)
/] Cl/Clt2

where

7r, kdk/2- 3/4

Ck 2k_3(k_ 1)!"

Proof. We start with the identity (8) and break the sum according to the genus
of ["]. Then by Propositions A and B the only nonzero sum is the one for the
genus c, and therefore

(2/,)
L(O, k)

(k 1)!
(- 1)

], 1’] Ct
[,,’] %

We change indices in the sum, picking up a factor of 2t- # C/(2), and get

L(O, k) 2t-x (2/x’ ")k(/
I)

(k 1)! [],[

Finally we use the factorization formula (12), again changing indices in the sum, to
prove our claim. E!

Remarks. (1) Notice that the terms of the sum in the theorem are well defined
by Proposition B, the factorization formula (12), and the definition of (,; also the
right-hand side is independent of ’x.

(2) It would be nice to have a canonical way of factoring the term N(cx)k-/2;
we would need something like "@(x/1)" but were unable to define this satisfacto-
rily. This issue is related to a question of Shimura [10, (B), p. 478].
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(3) However, we can still make some choice of factorization of N(,’I)k-l/2 and
then use Shimura’s reciprocity law to find algebraic and Galois properties of the
terms as we did in [7]. Undoubtedly, the factor 2t-1 would then match factors
corresponding to primes of bad reduction when writing down what the Birch-
Swinnerton-Dyer conjecture predicts (see the next section for some numerical
examples with 2).

COROLLARY. (i) Let k be a positive integer, of weight 2k- 1 as in (1); then
L(, k) is nonnegative.

(ii) Moreover, if k 1 or k 2 and 3 does not divide h, then L(, k) > O.

Proof. The first statement is clear; to prove the second we sum L(, k) over all
and obtain

L(, k) c" N()/-*lO,_a/.(zt)lZ,

where c is a positive constant. First notice that under the assumptions of (ii), the
different ’s are Galois conjugates of each other, and therefore, by a theorem of
Shimura I-11], one value L(, k) is zero if and only if all of them are zero. On the
other hand, Ok-i/2(Z) equals rl(2z)2/q(z) for k 1 and r/(z)3 for k 2, and hence
it does not vanish on the upper half-plane. This completes the proof of the
corollary. 121

Remarks. (1) Nonvanishing results for central values of more general L-series
are known due to the work Greenberg and Rohrlich (see [ 1-1, [9-1 and their sequel).

(2) The condition that 3 not divide h in (ii) is necessary; otherwise the ’s will
form more than one orbit under Galois and the proof breaks down. Indeed, we
found that, for d 59, of class number 3, and ff a character of weight one as in (1),
L(3, 2) 0. However, this seems to be the only such case for d prime congruent to
3 modulo 8.

5. Numerical examples. Let d be as in Section 2, with d =- 7 mod 8 (so c5 0)
and Cl cyclic of order h 2r, for some r > 1. Let be as in (1), of weight 1 (so
k 1), and a primitive ideal such that [] generates Cl. We then have two genera:
the squares (#o and the nonsquares f#. We fix two characters fro and / such that
f#,s f#s for s 0, 1 (see (5) for the definition of
For s 0, 1, we define

r-1 r-1 2nmn/r (2is Hm=O En=O e 0,()- Oa/.(z
2r-1 I-I=o()

and if’ 6eo6e. These three numbers are real, and our choices define them up to a
factor of + 1.
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Finally, we let

2rr Ir/(z )12

where r/is Dedekind’s eta function and for a primitive ideal I-a, (b + x/- d)/2]
with norm a, z (b + x/-d)/2a. This period can also be given in terms of values
of the classical gamma function via the Chowla-Selberg formula

2 {’ 2 ’TMI-I F(n/d)t"/a)

\cl /U .=,

It is not hard to verify that our main theorem implies the identity

5e2 I-I g, L(, 1)
22h-4"

where the product is taken over all characters
We have calculated the following examples.

15 39 55 95 111 183 295 407 471 559

2 4 4 8 8 8 8 16 16 16

1 1 1 1 3 11 3"73 32 32

To give an idea ofwhat these calculations involve, let us take for example d 407.
Let [13, (-3 + x//-407)/2]; then [] generates C1, which is of order 16. We
find that qo(8) 2489x/- 7302x/-11 (with the standard branch of square
root), and hence we choose ffo() to be some fixed 8th root of this number, and
i1( e2ni/161o(). Finally, we may take

35629731675101509 + x/-407
2.13

for 0 < j < 16.

We now have all the terms, and we can calculates
Choosing 2) all with the same b as we did is certainly not necessary but makes

the bookkeeping easier. (b here is just a square root of -407 to order O(1315)
13-adically, with b -3 mod 13 and b mod 16.) In order to calculate 01/2 at
these points efficiently, however, we need a program for 01/2 that takes into account
its transformation formulas. In this way we will always sum a theta series for a z in
the standard fundamental domain for Sl2(Z). (The theta series may be any one of
the three weight 1/2 Jacobi theta functions, and the program must keep track of
which one.) Also, the numerator in the expressions for can be calculated using a
resultant function, which would give the product without giving each factor.
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APPENDIX
Factorization formulas and intersections. In this appendix we briefly outline an

approach to the crucial factorization formula (12) different to the ones appearing
in [-7] and [-8]. This was already mentioned in [8] and is related to intersection of
Humbert surfaces in Siegel’s threefold.

Let be the Siegel upper half-plane of genus n and let F be the corresponding
symplectic group over Z. We will only need n 1 and n 2. We want to describe
certain subvaricties of 2/F2 first considered by Humbert [5]. Related curves on
Hilbert modular surfaces have been studied extensively by Hirzebruch and Zagier
[4], and this has been generalized to orthogonal groups of signature (p, q) by Kudla
and Millson [-6].
We will consider two simple examples of these varieties. First, the surface

obtained by the diagonal map

o)ZI,Z2b’-
Z2

Second, the curve obtained by the map

where (a, b, c) is an integral positive definite binary form of discriminant -d,
associated to the ideal [a, (b + x/-d)/2].
Now consider the theta function

O(n)(U, Z) e"imtZme2nimtu,
N

where u 6 C" and Z
When we restrict the theta function 0(2) to the above surface, we clearly get

0(1)(Ul, Z1)" 0(1)(U2, (15)

where u (ut, u2). On the other hand, if we restrict it to the curve and set u 0,
we get

20 (z) qam:z+bmn+cn2, q e2"iz. (16)
m,n N
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Since we know the action of F,. on 0, it is clear that we will have an identity
between the values of the two functions (15) and (16) wherever their corresponding
varieties meet modulo F2. This intersection consists in general of a finite number of
points and certainly includes all those points for which the factorization formula
was already known, giving a more conceptual proof. It turns out, however, that
there are more points of intersection, giving more identities related to values of
L-series, which we will explore in a later publication.

CORRECTIONS TO [8]

Section 1. The first formula after (6) should read

2 a 1 e

n=l j=O .
Section 2. The first formula which defines the differential operator D should read

D (1/2i)(d/dz) q(d/dq).
Section 4. The term (By) on the left-hand side of (23) should not be there, and the

remark immediately following should read "... the right-hand side of (23)...".
In formula (25) the right-hand side needs an extra factor of (-1)th-1)/2 and the

hypothesis of the Theorem should start with "Let , s’x
Section 5. The terms in the sum on the right-hand side of the formula right above

the Main Theorem should have a factor of (-4/N()); also, here and in (27) the
power of 2 on the right-hand side should be 2k-3.
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