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EXPLICIT ELLIPTIC UNITS, I

FARSHID HAJIR AND FERNANDO RODRIGUEZ VILLEGAS

Elliptic units are units in abelian extensions of an imaginary quadratic field
K c E that are obtained as values of certain modular functions at points in
K c arg (with arg denoting the upper half-plane). In this series of papers, we are
concerned with those elliptic units that are expressible as ratios of values of the
Dedekind eta function /. In particular, we will describe explicitly how the abso-
lute Galois group of K acts on these units. This action is completely charac-
terized by the Shimura reciprocity law [Sh], but the calculations are greatly
complicated by the presence of 24th roots of unity in the transformation for-
mulas for /.
The subject of values of particular modular functions at points in K W--the

description of their algebraic and Galois properties, the explicit determination of
their minimal polynomials, and so onmis very old. We have not attempted the
monumental task of sorting out the history of these singular moduli, as they were
classically known, or that of providing a full bibliography. Instead, we will just
mention the following.

In his 1828 paper on elliptic functions lAb, Oeuvres, pp. 380-382], Abel
proves, among many other things, the following identity, here written in modern
notation:

r/2(v/Z/2) 1 + x/ V/1 + x/
2r/2(2x/-Z-5) + 2

(The left-hand side is an example of an elliptic unit; its minimal polynomial is
X4 2x3 2x2 2x + 1.)

In the 1930s, G. N. Watson computed the minimal polynomials of a number
of ratios of values of r/by an ad hoc, trial and error process for the selection of
the appropriate 24th roots of unity. He managed to calculate in this way, work-
ing by hand with expansions of up to 10 decimal places, many examples of
degrees less than 20. In the third paper of his Singular Moduli series, he remarks
[Wa, p. 89 footnote], "I have dealt successfully with n 479 and n 599; for
each of these values of n, h 25 [the degree of the equation] and the selection
has to be made from 312 531,441 values. Each of the corresponding computa-
tions required twelve hours’ work." Weber’s book [We] contains many of these
polynomials for degrees less than 10.
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It is precisely the efficient management of these 24th roots of unity that
forms the core of this paper. We may always raise r/to the 24th power and avoid
these problems altogether, but there are many reasons why this is not con-
venient. For example, (1) the group of units obtained would not be optimal, in
the sense that the index of this group in the full group of units of the ring class
field contains extraneous factors (powers of 2 and 3 not arising from the class
number of this field), and (2), in computational terms, the size of the coefficients
of the minimal polynomial of the units obtained, as well as the precision needed
for calculating them, would be unnecessarily large. This last point is important if
one wants, for example, to calculate efficiently explicit generators for ring class
fields of K of small height or, say, the minimal polynomial ofj(z) 1/3 (z K c 9’),
as in the elliptic-curve-primality-proving algorithm of Atkin-Morain [AM].
Also, knowing the precise field where these ratios of values of r/lie is crucial for
Heegner’s original proof of Gauss’s conjecture on imaginary quadratic fields
with class number 1.
The plan of the paper is as follows: 1 is essentially a review of some elemen-

tary facts about the group GL2(Z/12Z) and their relation to the multiplier of/,/2.
In 2, we consider an order o of K with corresponding ring class field H and
define r/() for an o-ideal (satisfying some mild restrictions). Let us call a
product of integral powers of ratios /()/r/(o) simply an "/-quotient"; in this sec-
tion we describe the action of Galois on them. In 3, we introduce and study a
certain character rc from (o/12o)* into the group of 12th roots of unity. A central
theme of this paper, namely, that x encodes the Galois properties of r/-quotients, is
illustrated in 4, where we prove again some classical results about singular moduli.
We state and prove the main theorem in 5: an r/-quotient always generates

a Kummer extension of the ring class field H, and we give explicitly its asso-
ciated character in terms of x, as well as the expressions for its Galois conjugates
as r/-quotients. In particular, one immediately reads off the degree of H()/H.
We verify that what we obtain is sharp, in the sense that this degree cannot be
lowered by considering (, with ( a root of unity.
The final section contains various applications and illustrations of the main

theorem; some special cases of these have appeared throughout the literature,
including [HI], but usually in weaker and less explicit form. The majority of the
section concerns a detailed study of the units appearing in the first limit formula
of Kronecker [Kr]. Finally, we give a brief indication of how to use our results
to carry out numerical calculations, such as finding a defining equation of small
height for the ring class field H, as well as finding the minimal polynomial of
j(o)-13/for many types of o. (The remaining cases will be treated in the sequel to
this paper in which we will consider more general r/-quotients, l(’)/l(),
where the endomorphism rings of ,’ are distinct.) We end the paper with
some numerical examples.

Notation. For a ring R with unit, R* is the group of its invertible elements.
For a positive integer n, Itn is the group of nth roots of unity in *, whose ele-
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ments we write as en(a) e2nia/n with a e Z. For a number field F, )F and/v
are, respectively, the ring of integers and the group of roots of unity of F. The
Dirichlet characters we will need are the trivial character 1:1 and the quadratic
characters J4 and 8, of the indicated conductor, defined by ;4(a)= (-I/a),
)8(a) (-2/a) (a odd), where (-.) is the Kronecker symbol. For a group G and
right G-module M, we have the group of 1-cocycles ZI(G,M), consisting of
maps 2: G M such that 2(ax) 2(a)2(x) for all a, x G, as well as the sub-
group BI(G,M) of 1-coboundaries, namely, the 1-cocycles of the form a ma-

with fixed m M. We denote the class of a 1-cocycle 2 in the cohomology group

I-I(G,M) Z(G,M)/B(G,M) by []. For an integer a, we put = 0

we write 1 for the identity matrix. For odd a, let a )4(a)a. The square
root symbol will denote the usual branch of square root, for instance, v/h-;
es(a- 1)v/-d. More notation will be introduced in the body of the paper, especially
in {}2.1.

1. The multiplier system of q(z). Dedekind’s eta function is defined by

rl(z) e2iz/24 H(1 e2zizn), Y3(z) > O.
n=l

As is well known (e.g., [Si, p. 17]), r/2 satisfies the transformation formula

n2( t o z) + M=( z? )eSL2(TZ), (1)

where o denotes the standard action of SL2(TZ) on the upper half-plane, and k(M)
is independent of z. It follows immediately from (1) that q defines a group homo-

( 1). In thismorphism SL2() IE*, and that q(T)-- el2(1), where T

section, we point out some properties of k we will need and give a simple algorithm
for computing it. The arguments are group theoretical.

First, it is easy to see that any character SL2() IE* is determined by

( 0 1) and note that (ST)3 S4 1. Then q(S)3-q(T). Indeed, let S
_1 0

q(T)-3 and O(S)4 1 together imply that (S) (T)3. But S and T generate
SLy(T/); hence is completely determined by its value on T. Moreover,
O(T)I (S)4 1; therefore any character of SL2(TZ) has order dividing 12. For
our character k SL() /1, we have k(T) el(1), q(S) e1(3), k(-12)
(s
For the remainder of this section, let N 3 or 4. Define characters kr of order

N by k 3/4- It is easy to establish that bv factors through the reduction map
SL2() -- SL2(/N). To see this, let FN SL(Z/N7Z). A simple calculation
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shows that F4 has order 48, with commutator subgroup F4’ isomorphic to .44,
the alternating group on four letters. The subgroup generated by T has order 4,
and acts by conjugation on 14’, giving the semidirect product decomposition
14 (T) > I. Hence, there is a unique character of I4 into #4, mapping T to
4(T) --e4(1), whose composition with the reduction map above is none other
than 4. Similarly, I3 has order 24, with commutator subgroup isomorphic to
the quaternion group of order 8, and again, 1-’3 (T) > F.

Every M SLE(Z/NTZ) can be taken to an element in the commutator sub-
group via left multiplication by a unique power of T; that is, TaM F for a
unique a (mod N), and then v(M) N(T)-a. Together with the elements of

F (see Tables 1 and 2), this gives an algorithm for computing (M) for any M
SL2(,). Although we will not need them, explicit formulas using Dedekind sums
or of the type (M) e-2’apv(M)/ where ply(M) is a polynomial in the entries

of M can be given. For example, with M (a b Herglotz [He] gave the fol-
lowing: \ /

p3(M) ac(b2 + 1) + bd(a2 + 1)

p4(M) (b2 a + 2)c + (a2 b + 2) d + ad.

TABLE
Commutator subgroup of SL2(/4)

1 0

-1 1

1 1 1 -1
-1 2 )

1 2

2 1

(0

TABLE 2
Commutator subgroup of SL2(7Z/37Z)

(1 0)-+ 0 1

Incidentally, these tables appear in Hurwitz’s thesis [Hu], which is somewhat
in the same spirit as this paper.
We now make a study of the "cocycle liftings" of to GL2(Z/127Z); these will

play a key role in 3. Consider the exact sequence

1 -- FN -- GLE(TZ/N7Z.)-- (/NZ)* -- 1,
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(a 0)which admits a splitting (TZ/NZ)* GL2(Z/NTZ) given by a
0

This gives a natural (fight) action of (Z/NTZ)* on Fs by M.a gtMgt (note that is
its own inverse). We therefore have GL2(Z/NZ) (/NZ)* > Fs. Also, we let
(7Z/N7Z)* act on/s by (.a (a.

LEMMA 1. The character qs Fs - /aM is (/NZ)*-equivariant.

Proof. It is enough to check this on the generators T, S. Since N 3 or
4, (TZ/NZ)* {_ 1}. We then only need to verify that s(T.(-1))= s(T)-1

and s(S.(-1))= s(S)-1, both of which are clear, since T.(-1)= T-1 and
S.(-1) S-1. We also remind the reader that (-12)=-1; hence, for a e

((a 0))((2)ifN=4s 0 a 1 if N= 3.

Definition 2. Let di+ be the 1-cocycles on (Z/47z)* with values in/a4 given by

di+(1)=l +(-1)=(1 for+
for-.

LEMMA 3. (i) zl((7Z/4) ,/a4) (Z/E7Z)2 with basis t_, 7,4.
(ii) Bl((7Z/4g)*,/a4) g 7Z/EZ with basis

(iii) Hl((g/4g)*,/a4) g 71./271, with basis [c_].
(iv) H((Z/37Z)*,/a3) is trivial.

Proof. (i) The conditions for a map di (TZ/4g)* -/a4 to be a 1-cocycle are
just di(1)= 1,(-1)-1(-1)= 1; that is, di(-1) is free to take any value in
The result follows. For (ii) and (iii), note that ;t4(a) a-. Finally, (iv) is clear,
since the group and the module have coprime cardinality.

Definition 4. For di Z((7Z/4Z)*,/a4), define GLE(g/47Z) --,/a4 by

(M) t(m)4(rhM), M GL2(TZ/47Z), det M m. (2)

PROPOSITION 5. (i) For every di6zl((z/4g)*,/a4), zl(GL2(TZ/47Z),/a4),
and q coincide with 4 when restricted to SL2(/4).

(ii) Conversely, if zl(GLE(TZ/47Z),/a4) coincides with q4 when restricted to

SLE(E/4g), then = qfor some t3 Z((Z/47z)*,/a4).
(iii) [a] [,] if and only if ItS] [6’].

Proof. (i) Note that a(rh)= di(m)4(12 di(m). We now show that , is a
1-cocycle. For Mj GL2(Z/4E), mj det Mj,j 1, 2, the identity

m’2MIM2 (’iM).m2)(2M2)
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combined with Lemma 1, gives

(M1M2) 6(mlm2)4(m"2M1M2)

6(mlm2)q4(((lM1).m2)(2M2))

6(mlm2)4(lM1)m24(2M2)

fi(mlm2)
6(m1)m26(m2) b6(M)mb6(M2)

6(M1)m6(M2).

(ii) Let di(m)= (rh). Then 6 e zl((.,/47Z)*,lt4), and for a determinant m
matrix M GL2(Z/4Z),

(M) (rh)(rhM)

di(m)4(rhM)

b, (M).

(iii) By restriction to the subgroup {,-’i}, we see that b, b, are not coho-
mologous, whenever 6, 6’ are not. Conversely, if e/4 splits 6/6, then it also
splits b/b,. []

Remark. A 1-cocycle lifting b4 to GL2(7Z/4) is never a character. Other-

wise, we would have (M2)detMl-1 1 for all M1, M2 e GL2(/47Z); in particular,
(M_2)2 1 for all M2. This contradicts the fact that the restriction to SL2(/4Z)
of , namely, b4, is surjective onto P4. However, abelian subgroups of GL2(TZ/4)
admit character lifts of b4, as we now show.

Definition 6. Put b+ q+/-.
Note that b+,q_ represent all 1-cohomology classes of lifts of 4 to

GL2(/4).
Ptoxosmo 7. Let G be a Oroup and p" G GL2(Z/4) a representation

with abelian imaoe. Then
(i) for some choice of sion +_-, the map q o p is a character of G;

2 1.(ii) if Im(p) SL2(/4), then

Proof We may assume Ira(p) SL2(/4), the other ease being trivial. For
M1,M2 Im(p), b+/-(M1M2)=q+(M)mtk+(M2) b+ (M2)m’b+ (M1), since M1,
M2 commute; hence

b+ (M1) l-m2 + (M2)-m’ (3)
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Take any M2 elm(p) with determinant m2 =-1, and put e--(2M2)2
{+,-}. For this choice of sign, we have

e(M2)2 te(m2)24(2M2)2

1 if e=+
-i2 if e

By (3), for any M1 e Im(p),

e(M1)2 e(M2)1-ml 1,

since 1 ml is even. In other words, b o p is a 1-cocycle taking values in/t2, which
implies that it is a character. Incidentally, for the other choice of sign, we have
b_(M2)2 e6_(-1)2 =-1. This shows that

_
is not a character, because by

the cocycle property, _e(M2) b_(M2)-I_(M2) 1.

Remark. When Im(p) SL2(Z/4Z), a different choice of cocycle representa-
tive would give p )4 o det instead of p.

2. Galois properties of eta-quotients

2.1. Basic setup and notation. In this section, for the reader’s convenience, we
recall various classical results concerning orders in an imaginary quadratic field
and set up some additional notation that we will use throughout the paper.
We fix an order o of discriminant -d in an imaginary quadratic field K

With a bar we denote complex conjugation in IE and also its restriction to K,
and with N, the norm map in KIll). For an ideal sc o (by ideal we will always
mean an integral ideal unless otherwise stated), we let N(s)= [o" ] be its
norm. We say s is proper if Endr(s) o; this is equivalent to being inver-
tible, in which case sCs N()o. Products of proper ideals are proper. We
remark that if N(s) is prime to [t3r o], then s is automatically proper. Also,
the norm map is multiplicative on proper ideals (that is, N(sCs’)=
N(C)N(’)), but not necessarily so on arbitrary ideals. An ideal o is
primitive if it is not of the form ms’ for some integer m > 1 and some o-ideal ’.
For example, if o’ c o is a suborder of index r, then ro is a primitive if-ideal,
though not proper, and it is a proper o-ideal, though not primitive.
For an ideal c o, we let I*() be the set of proper, primitive, integral ide-

als of o coprime to . We also let P*() be the principal ideals in I*(); that is,
those of the form #o for # e o. Let CI(o) be the ideal class group of o, namely, the



502 HAJIR AND VILLEGAS

quotient of the group of proper fractional ideals of o by the subgroup of princi-
pal ones. To lighten the notation, we write # P*() instead of (/z) P*(-)
and, for integers m, I*(m), P*(m) instead of I*(mo), P*(ma).
We let Kab denote the maximal abelian extension of K in . If F c Kab is a

finite extension of K, and is a proper ideal of o prime to disc(F/K), we let
denote the corresponding Artin-Frobenius automorphism of F/K. It is not hard
to show that, for any ideal - of o, the set I*( disc(F/K)) covers the Galois
group Gal(F/K) via the Artin map. In fact, every a Gal(F/K) equals try,, with

I*( disc(F/K)) a prime ideal, infinitely often by a theorem of Chebotarev.
For # o and I*(1), let(#/C)r (v/-)’-1 be the quadratic symbol of K at

Let H Kab be the ring class field corresponding to a; this field may be
described as the subfield of Kab fixed by all tr() for # P*(d), where - is an
arbitrary o-ideal. The Artin map gives an isomorphism CI(o) Gal(H/K). We
let H+ H c IR be the maximal real subfield of H. We let w I#nl be the num-
ber of distinct roots of unity in H. This number is a divisor of 24 and equals
the greatest common denominator of {IN(#) 1[# e o prime to 6}; both of these
facts are easy to verify (e.g., [KL, pp. 216-217], [St, p. 220]). For a positive
divisor N of 24, put WN gcd(w, N). The quantity w12 will play a key role in this
paper. Because it will appear in many formulas, we also put k w8/2.
We call Kab Kummer over H if w H. In this case, there is an a-ideal

such that the map (o/-o)* /w defined by # ,-x is a homomorphism,
which we call the associated character. This character completely determines the
extension H()/H. For instance, by Kummer theory, the degree of this extension
is the order of the associated character.
Any I*(1) has a standard basis, namely, one of the form

2
,a (4)

with a INTO, b an integer determined modulo 2a satisfying bE -d (mad 4a).
In the equivalent language of quadratic forms, corresponds, under this choice of
basis, to the primitive form axE + bxy + cy2 of discriminant -d. We shall always
deal with ideals that are primitive and therefore have a standard basis.

If d, C I*(-) are relatively prime, then d I*(); if [(b + v/Z-d)/2,
aaa] is a standard basis of ’1, then [(b + x/z-d)/2, a] is a standard basis of
[(b + x/-Z-d)/2, aa] is a standard basis of 1, and conversely.

2.2. Definition of rl on ideals

Definition 8. For any 1 I*(6) with standard basis [(b + x/-L--d)/2, a], let

1() e48(a(b + 3))r/(,-b +_
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Verifying that r/() is well defined, that is, that it does not depend on the
choice of standard basis for , is an easy exercise based on the following facts:
b is determined modulo 2a, a2 1 (mod 24) since a is prime to 6, and q(T)
el2(1).
Our main technical tool in this paper is the Shimura reciprocity law [Sh,

Theorem 6.31]; Stark’s less general formulation of it [St, Theorem 3’] will
suffice for our applications, as in the following lemma, for instance.

LEMMA 9. Suppose a is a positive inteoer, and I*(6a) is a prime ideal of
norm p. Let [(b + v/Z-d)/E,p] be a standard basis of , O(Z)--rl(z/a)/rl(z), and

zo (-b + x/S-d)/2. Then

0(7,0) Kab and g(z0)= ()g(zo/p).
Proof According to [St, Theorem 3’], we have O(Zo) Kab and

(o(zo)) (o o pn- )(n o zo)

(1 0) Note that B ozo=zo/p and that pB-l= S-1BS. For awhere B=
0 p

function h(z) on the upper half-plane, put h*(z) (h o S)(z) (h o S-)(z). Then
O*(z) x/-drl(az)/rl(z). Since n(az)/n(z) has rational Fourier coefficients at ic,
B acts trivially on it, and, of course, B acts on v/-d via multiplication by the

symbol (). Hence,Kronecker

g o pB-l (g* o B) o S

oS

proving the lemma. []

PRO’OSITION 10. Suppose / I*(6), 1 I*(6a) are two ideals of o, with
norms a- IN(/) and al ]N(M’I). Then

(i) (Galois action)

/() es(-a)r/(s’),

( 11)
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(ii) (Inte#rality) /(z’)/r/(o) and x/-dr/(o)/r/() are al#ebraic inte#ers in Kab;
(iii) (Reciprocity)

.(,:,) )
(_1)((a-1)12)((a’-1)12)(r/(,-.’l)’z’’-I

\ )

(iv) (Capitulation) If rl2()/rl2(o), then in some finite extension F c Kab

ofK we have

Proof. The action of complex conjugation follows immediately from r/(-g)
r/(z). All remaining claims are consequences of the Shimura reciprocity law. The
functions #(z)= l(z/a)/rl(z) and v/-d/t(z) are modular functions of level 24a
with Fourier coefficients in 7Z[/24a] at every cusp. By [St, Theorem 3’], the inte-
grality of Fourier coefficients at all cusps and formula (5) below imply (ii). To
prove (i), we may assume without loss of generality that 1 is a prime ideal of
norm al p, thanks to the multiplicativity of the Kronecker symbol. Choose a
standard basis [(b + x/-S-d)/2, ap] of and put z0 (-b + x/L-)/2. From the
definitions,

,(.) e48((b + 3)(a 1))O(z0), (5)

and

We have

e48(p(b + 3)(a 1))O(zo/p).

rl(o) J e48(p(b + 3)(a- 1))9(z0)"

and we compute via the reciprocity law (in the form of Lemma 9) that

This proves (i), from which (iii) follows by quadratic reciprocity.
As for (iv), it suffices to show that 12 (which equals al2A()/A(o), where A

is the discriminant modular form) generates 23n, and this amounts to a
standard result about A-quotients [St, Lemma 2]. However, we give a direct
proof. We can find 1 I*(6a) such that 1 (#) for some # e a. Let 1
/’/2 (d[1) //’]2 (0). Then



EXPLICIT ELLIPTIC UNITS, 505

for some 12th root of unity . Let F K(a, ); we then have the equality as ideals
of )F, (t)(0l)tr dCdl)F By (ii), we know that () divides (a) and (0q) divides
(al). Since a and al are relatively prime, we conclude that () t3. m

3; The character r. In this section we introduce and study a character
x: (o/12o)* /12, which will be instrumental in the description of Kummer
extensions generated by r/-quotients.

Definition 11. We define

1 /2(#o) P*(6)K(#)-- Z4(]N#); 2(0--- #u

LEMMA 12. Suppose # e P*(6).
(i) If( a*, then ((#) (-xx(#); in particular, x(-l) -1.

(ii) x() Z4(N)wx().
(iii) If v, v P*(6), then x(v) r()vx(v).
(iv) x(g) e 12.
(v) Let a Ng. Choose a standard basis o [(b + )/2, a], and let M, be

the multiplication by matrix under the basis o [(-b + )/2, 1]; that is,

det M, a.

Then

x(#) e24((b + 3k + 6)(a 1))(fiM,),

where aM, is (the reduction modulo 12Z of) ( g )M,.

Proof. The definition of x gives (i) immediately, and (ii) follows from Pro-
position 10(i). To prove (iv) and (v), note that both [(-b+ x/-2-d)/2,a] and
[/7(-b + x/-z--d)/2,/7] are bases for/70, so there is a matrix

affecting the change of basis:

ff SL2(Z)

(6)

M o (-b + x/’)/2 (-b + V’L-d)/(2a), / 7(-b + x/L--d)/2 +
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We now apply (1) and (6) to the definition of r:

1 /2(M o (-b +x(la) z4(a)e24((b + 3v)(a- 1)); r/2((-b + x/_L_d)/2

e24((b q- 3 + 6)(a 1))q(M) ),(-b q- x/-d)/2 +

e24((b + 3 + 6)(a 1))(M).

Since a- 1 is even, this much suffices to prove (iv). One checks easily that
aM Mu, which proves (v) since (rood 12) is its own inverse and since k factors
through SL2(/12). The eoeyele property (iii) is a simple consequence of the way
the Galois group acts:

1(#) 4(]NlA]Nv)#-lv-11,]2(l)/l,12(l)
it(v)

Z4(]N)- k ]2(O) J

where the last line is justified by (iv). []

LEraraA 13. If #, #’ P*(6) and #- I’ 12o, then x(l) x(#’). The assion-
ment # x(#) induces a map (o/12o)*

Proof Let a=lN#, a’=]N#’. Clearly, Mu-= Mu, (mod 12Z) and a
a’ (mod 12). Since (aa’,6)= 1, we may choose standard bases (#)=
[(b + x/-z-d)/2, a] and (/’) [(b’ + v/-z-d)/2, a’] such that b =_ b’ (mod 24).
It follows from Lemma 12(v) that

e24((b + 3k + 6)(a a’)).

If d is odd, then so are b and k, and we are done. If d is even, one checks easily that
a a’ (mod 24), again giving the desired result. We conclude that we have a well-
defined mapping (o/12o)* /t12 because every element of (o/12o)* has a repre-
sentative/ e P*(6). []

Remark. With slight abuse of notation, we reuse the letter x for the character
(a/12a)* /fi2 induced by # x(#). For instance, for an integer a prime to 6,
x(a) makes sense even though x(/) was originally defined only for primitive/.
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Our next goal is to prove that x is a character; to this end, we decompose r
into its 3-component x3 and 4-component x4 by writing x x3/tc4. Checking
that x3 is a character is straightforward; to do the same for x4, we relate it to the
character p of the previous section.
We first classify the isomorphism classes of the rings o/No for N 3 and 4.

To give a compact notation for the isomorphism class of 0/40, which is deter-
mined by the value of d (mod 16), let us say o is of "4-type" 2) if n v2(d) and
6 (if required) is a certain quadratic symbol as follows: if v2(d)= 0, 6 ;t8(-d)
and if v2(d)= 2, 6= Za(d/4) Similarly, saying o is of "3-type" 3[,) means
n v3(d) where, for v3(d) 0,’t$ . To list the various 12-types, it wm be con-
venient to put

d if d is odd
do=

d/4 ifdiseven.

The six 4-types of o, together with the corresponding values of do (mod 8) and w8,
as well as the three 3-types and the corresponding d (mod 3) and w3 are listed in
Tables 3 and 4.

TABLE 3 TABLE 4

4-type

20+
20

22

23

2>4

do (mod 8) W8

2

4

3,7 2

2, 6 2

0,4 8

3-type

30+
30

3 >1

d (mod 3) w3

2 1

1 1

0 3

LEMMA 14. (i) The map x: (o/12o)* ill2 is a character of order precisely
w12 gcd(w, 12).

(ii) Given any positive inteoer m, there is a # o such that IN/ 1 (mod) m and
x(#) is a primitive w2th root of unity.

Proof. (i) We begin with a remark about the order of x. By Lemma 12(iii), x
is a character if and only if x(#)Nv-1 1 for all #, v P*(6), in other words, if
and only if xw12 1. We break up the problem into its 3-primary and 4-primary
components and first show that each component of x is a character; to complete
the proof of the lemma, it will then suffice to prove part (ii).
Choose a standard basis for o, and let p be the associated representation

p: (0/40)* GL2(71/4Z).
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Clearly, p has abelian image. We now claim that, for each 4-type of
is a character of order 2 on (o/4a)*. This will show that x4 is a character, since
is a character by construction (Proposition 7). The calculations are routine; we
indicate the steps, leaving some of the details to the reader.
When W4 2, Im(p) g SL2(TZ/47Z); hence to determine up o p.according

to the recipe in the proof of Proposition 7, we must evaluate e ba(-1M)2 for
an arbitrary determinant -1 matrix M in the image of p. For example,
M p(v/-Z-) is such a matrix in every case except for 4-type 23, where we can
take M p(1 + v/S-d0) instead. We find that e (-1)a+l. Together with Lemma
12(v), one checks in every case that xa(/)/up(/a) in fact factors through the norm
map. Moreover, it is either )0(IN#) or )4(]N]), except for type 2_, where it is

When w4 4, p maps into SL(TZ/4) and zp b4 o p is a character. One
checks using Lemma 12(v) that x4

It remains to show that x3 is a character of order w3. Recall from Lemma
12(iii) that

K3(#)K3(V) K3(#)INv-1 K3()INu-1

We want to show that this is identically 1; the only nontrivial case being
/N/ ]Nv 1 (mod 3), it suffices to prove that

]N/t 1 (mod 3) = 3(/)- 1. (7)

To prove this, note that by Lemma 12, K3(-1) 1 and K3(l K3(#) X3(#)-1.
If IN# # 1 (mod 3), then

K3(#) K3()-1K3(#)

--/3(--1)

proving (7). Therefore x3 is a character.
(ii) As before, we consider the 3- and 4-components separately. For the 4-

component, it clearly suffices to consider the case where m is a power of 2. If
w4=2, take / to be -1. If w4=4, one easily finds a #0a with norm
]N 1 (mod 8) and x(#0) i. Let x be a square root of N#b-1 in the 2-adic
integers 7z2, and take # (x mod m)#0. A similar argument works for the
3-component.
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Although the definition of x involves a certain number of choices, this charac-
ter depends, to a certain extent, only on the 12-type of o; we make this precise in
the following lemma.

LEMMA 15. (i) Suppose o’ is an ima#inary quadratic order of discriminant d’
with associated character x’. Let N 3 or 4. Suppose there exists a rin# iso-
morphism o’/No’ -- o/No. Then there exists an integer r prime to N, depend-
in# on d/, such thatfor all primitive la’ o’ prime to 6,

K:N(I]/(’)) ,4(]N#) (r-l)/2

In particular, Xl o and have the same order.
(ii) Up to composition with automorphisms of (o/12o)* and twistin# by ,4 0 IN,

the character depends only on the 12-type of o.

Proof Choose standard bases #’o’=[(b’+_-d’)/E,a’],o=[(+x/-Z-d)/2,1],
where a’ IN#’. There exists an integral matrix P such that

Note that r det/5 is prime to N; moreover, since (1) 1,/5 must be of the form

(r s). Therefore, we can find another basis [(b + x/)/2, 1] so thatP--
0

Since @ is a homomorphism of tings, we have

Tr(@((b’ + x/Z-d)/2)) Tr(r(b + x/Z-d)/2) rb =- b’ (mod N). (8)

In the notation of Lemma 12(v), Me,(/,,)= P-1M,P (mod N), since P is the
change of basis matrix. Let a 1N((#’)) and note that a a’ (mod N). By
Lemma 12(v), we have

rN(0(#’))   v lv(aP-IM ,’P)
where n is the N-component of the 12th root of unity

e24((b + 3 + 6)(a 1))
e24((b’ + 3 + 6)(W- 1)r)

e3(b(a- 1) rb’(a’- 1))e8(( + 2)(a- 1)(1 r) + (a a’)(b r(v + 2))).
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Using (8), one easily checks that 3 1. Verifying 4 )(.4(a) (r-l)/2 is a bit more
tedious, but it is routine once one notes the following: when d is odd, so are b and, while when d is even, a a’ (mod 8). To complete the proof of (i), we merely
observe that by I,emma 1, qv(8p-1M,,P) qiv(ti’M,)r. Finally, (ii) follows from
(i) by taking o’ o. m

Remark. Since there are only finitely many isomorphism classes of the (finite)
rings (o/12o)*, the task of deducing the properties of x is reduced, by the pre-
ceding lemma, to a finite calculation. In light of this fact, an alternative ap-
proach to understanding the character x would have been to study it for a single
discriminant -d in each residue class of-d (mod 48); this is the approach
advocated by Stark in similar situations, for instance, in [St, p. 219].

4. The functions 2 and ’a. To give a preview of the role of x in the sequel, we
now show how the key properties of this character translate easily into a classi-
cal result about the field generated by the singular values of the functions 2(z)
and 3(z); these functions are related to the modular invariant j(z) via 732 j,
] j- 1728. Calculation of the minimal polynomial of these singular moduli is
one of the steps in the Atkin-Morain primality proving algorithm [AM]; we will
treat some of the Weber class invariants, which are also used by Atkin and
Morain, in the final section.

Let g2, g3 be the level-1 modular forms of weights 4 and 6 given by

g2(h)-60 y ,-4,
2cA-0

4(i) 140 ,-6
2cA-0

As usual, we put gk(g) gk([Z, 1]) for 13(z) > 0, and then

o:(z)/n8(z), ])3(g) /3 (g) //12 (g)

Definition 16. For a e I*(6), with standard basis [(b + v/Z-d)/2, a], let

y2(a)
g2((-b + x/-s-d)/2a)

3(j
g3((-b q- x--d)/2a)

] 12 (,.)

Notice that yk(d) a2kg2(d)/18(d); hence y2(,.q’) and y3(,.q’) do not depend
on the choice of standard basis for a.

THEOREM 17. Suppose / I*(6) has norm a.
(i) For k 2,3, k(a) e Kab, and ifsdl

(ii) y2(ze) is Kummer over H with character x oforder w3.

(iii) y3(a) is Kummer over H with character x oforder w4/2.
(iv) If w3 1, ?2(ze) e H+; ifw4 2, },3(aC)/x/c-d H+.
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Proof (i) Without loss of generality, we may assume that ,-qg’l is a prime ideal
of degree 1 and norm p. Choose a standard basis ,’ [(b + v/Z-)/2, ap]

where a 1N’. By definition, we have

O2((-b + xf-L--d)/2a)])2(,) e6(-a(b + 3k))r/8((-b + x/z_d)/2a)

e6(-a(b + 3#))])2 2a ]"
Now ])2(g) is a modular function, so the Shimura reciprocity law [St, Theorem 3’]
applies: ])2(s’) e Kab, and

-b+ x/S-d)])2()a" e6(-ap(b + 3))(])2 o pB-1) B o
2

where B--(lo p)" Note that pB-I=S-1BS, with S=(_l 01)" Since

q(S) e12(3), one checks easily that ])2(S o z) ])2(S-1 o z) ])2(z). Owing to the
rationality of the Fourier coefficients of ])2(z) at iv, B acts trivially on ])2(z) as
well. Therefore,

-b+ x/Z-d)])2(,)a" e6(-ap(b + 3))])2 2ap

The proof for ])3 follows exactly the same pattern; one checks using q(S) e12(3)
that ])3(S o z) ])3(S-1 o z) -])3(z); hence pB-1 acts trivially on

(ii) We have by (i)

])2(,.ff’)aO’) -1 ])2(’5ff/2)

a4 (]N/,t)402 (,(fi))

4(K(]2)

K(l)-4a.
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As (a, 6) 1, and as every class in (o/12o)* has a representative in P*(6ad),
is Kummer over H with character x-4a xa, which has order w3 by Lemma 14.
Note that xa x{1, since a 1 (mod 3) when w3 3. Without difficulty, one
proves (iii) in the same manner. To prove (iv), simply note that by Proposition 10.i
?2(,3:ff)--’})2(d) and y3(,.)--- --y3(d:).

Remark. For prime d > 3, part (iv) of the above theorem is used by Gross
[Gr] to give a model over H+ for the CM elliptic curve A(d) with discriminant
ideal (-d3).

5. Main theorem

Definition 18. Let Do be the group of degree-0 divisors supported on I*(6d),
that is, formal linear combinations

with nj Z, j e I*(6d) na d j=l nj 0. Given such D Do we define its expo-
nent e (1/2) Y’l ny(]Nly- 1) Z, its support -z I-[,0 y, and its ideal

l-l’r 1deal of o. We put D j=l nj, and ifz tty=l oy which is a fractional
e I*(6-), D jl njlj. We also extend the definition of r/ to lD0 by

multiplicativity, that is,

j=l

THEOREM 19. Suppose 7) Do has exponent e, support , and ideal ff Then
(i) r/(D) is Kummer over H with character xe(-)r,

(ii) for I*(6#-), r/(D) l(D); l(D) e4(-We)l();
(iii) r/ (79)213rab
(iv) for no root of unity is the de#tee of n((rl(79))/n less than the de#ree of

Proof. The proof of (i) is a straightforward application of reciprocity (Proposi-
tion 10(iii)). Suppose that 79 nja’j with aj ]NCj, and that # e I*(6dal... at)
has norm m. Then
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The proofs of (ii) and (iii) are immediate from Proposition 10. As for (iv), suppose
(m 1 and let t [n(r/(D)) n]. Consider the abelian extension n((rl(D))/n. By
part (i), Lemma 14(ii), and the Chinese remainder theorem, there exists o with

IN# 1 (mod m) such that ((q(D))(")-1 has order t. m

Remark. We note in passing that when K does not have discriminant -3 or
-4, there exist divisors 79 lD0 such that H(?(79))/H achieves the maximal
degree, namely, w12. Indeed, there are o-ideals z/prime to 6 whose Frobenius
acts nontrivially on/12; such an ideal is automatically not the square of another
o-ideal. The divisor 79 - o D0 has exponent ev coprime to w/2 and non-
square ideal v ; hence, by Theorem 19, r/(79) generates an extension of
degree w12 over H.

6. Applications of the main theorem. As our first application of Theorem 19,
we give examples of the well-known phenomenon that A(/)/A(o) is often a high
power in H (e.g., [De], [St], [Ro], [KL]). The novelty here is that we say exactly
which roots are in H and even give an explicit formula for the conjugates. The
latter is especially useful for numerical calculations, as we will indicate briefly
below.

TI-mOREM 20. Suppose z/ I* (6d). Let (/)/(o). Then
(i) wl, H; in particular, 0 12 H;

(ii) if/ /21 for some ideal /1 of o, then n.

Proof. Let 79 -o 6 Do. The divisor W1279 has exponent W12(]Nd2’-- 1)/2 -=
0 (mod w12), and ideal z/w12, which is a square. By Lemma 14 and the main
theorem, r/(w1279) is Kummer over H with trivial character, proving (i). If

1, z is a square and ev- (]NZl -1)/2 0 (mod 12), and again we
apply Lemma 14 and the main theorem to prove (ii). m

As our second application, we show how to recover the quadratic reciprocity
law over K via c; this approach to the quadratic reciprocity law over K is
neither novel nor surprising, but we include it as an illustration of the theme that
x captures much information about the Galois action on abelian extensions of
K. The reader may wish to compare our treatment with that of Herglotz [He].
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THEOREM 21. Suppose o is the maximal order of K. For all relatively prime
numbers #, v e o with odd norms IN(#) m, IN(v) n, we have

(#) () (--1)((m-1)/2)((n-1)/2)K4(fl)(n-1)/2X4(V) (m-1)/2-r r

Proof.
we have

It suffices to prove this for #, v e P*(6d) and (m, n) 1. By reciprocity,

?/(0)
tr(v)-I ?/(llO)tr()-I ((m-1)/2)((n-1)/2)

r/(o) J , r/(o) ,] (-1)

When we evaluate each side of this equality using the main theorem, we obtain

() (z4(m)())(n_l)]2 (V) (Z4(rOtC(V))(m_l)/2(_l)((m_l)]2)((n_l)]2

We now must recall that x(#)n-1 x(v)m-1 1 (Lemma 14); in particular, we may
replace x by x4 in the above formula without altering it. All that remains now is to
rearrange the terms. []

The next application of the main theorem is to attach to each a-ideal class a
real unit that generates, over K, a Kummer extension of H. In some cases, this
unit is closely connected to the j-invariant of o; its logarithm appears in the
Kronecker limit formula.

Definition 22. Given any primitive proper ideal z of a, with standard basis
(4), define

1 Ir/((b + x/)/2a)l2

u v/_d It/((b + x_d)/2)l=

Note that u u is a positive real number (ua 1), canonically
defined for all proper primitive ideals, not just those prime to 6.

LEMMA 23. Let ,1 be proper primitive ideals of a with norm a, al,

respectively.
(i) Suppose #’, dl are in the same o-ideal class. Then u u.

(ii) If I*(6d), then

u=___

where +__ es((k- 1)(a- 1)).
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(iii) u, is a unit in Kab.
(iv) u is Kummer over H with character Xal-1, which has order

w12/gcd(w12,al- 1), where ai is the norm of any ideal all I*(6d) in the same
a-ideal class as

(v) If ag I*(6d) and I*(6a) has norm a, then

u= e8((-1)(a-1)a)() (1)2

Proof. It suffices to prove (i) under the assumption ag (#)a with # e a.
We may choose b such that

b + v/:-d z= a,a= a,
2 2

with a lNa, a 1Natl. There is a unimodular matrix M ( 3 such that
\

g 2 =M 2

In particular, M (b + v-)/2a (b + v-)/2a, and

It is now clear from (1) that u,, u. As for (ii), it follows from definitions that

"

e8((a- 1)(- 1))uw.

It is easy to see that ts equals u,, proving (ii). To prove (iii) and (iv), we apply
Theorem 19 to the expression for u in (ii). Let +- 2, which is a
divisor in D0 with exponent a 1 and ideal (a); clearly, u (D)=/a*; hence u
is a ut by Theorem 19(iii), and this proves (iii). Furtheore, by Theorem 19(i),

K K
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Thus, we must show that the product of the two quadratic symbols above is 1. For
this we make use of the quadratic reciprocity law we proved earlier: if we let
m IN#, v a*, then n ]Nv a2 1 (mod 8), and Theorem 21 gives

X4(#)(a2-1)/2x4(a*)(m-1)/2

---1

since tc4(a*)--x4(1)--1. Finally, (v) is immediate from (ii) and Proposition
10. m

Definition 24.
ing C and put

For a class C e CI(o), choose any ideal e I*(6d) represent-

where nc Wl2/gcd(Wl2,]Nz[- 1).
By the previous lemma, uc, vc, nc are all well defined. Moreover, nc divides 6.

In fact, the possible values for nc are the divisors of 2w2/11 each with multi-
plicity ICl(o)l/(2w12/llrl)> IC1()1/4. In particular, there exists a nontrivial
class C with nc 1, except for finitely many orders o. The importance of the
above units for arithmetic applications is due to their appearance in the limit
formula of Kronecker, which can be phrased as follows.

TrmOREM 25 (Kronecker’s first limit formula).
Dedekind zetafunction ofa class C CI(o). Then

Let (,(s, C) be the partial

a (0, C) a(0, [a]) -log(uc).

Proof. This is typically written (’,(0, C) (-1/24) log []NCSA()]2, with s
any ideal in C-1 [St, p. 206]. The formula we have given is easily seen to follow
from this.

The limit formula implies that the units uc are highly nontrivial in various
senses. For instance, one can use them to give a subgroup of finite index in the
unit group of H (e.g., [Si], [KL], [H1]); also, as we now indicate, for nontrivial
C, uc has maximal degree over

THEOREM 26. Suppose / I*(6) is not principal in a, and g /(s/)//(a). For
all positive intelers n divisible by w12, K(gn) H.

Proof. A proof for n a multiple of 24 is given by Schertz [Sc], and it works
equally well here, thanks to Theorem 19 and Lemma 14. We sketch it briefly. It
suffices to consider a prime ideal of norm p. For a character of
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G Gal(H/K), we put L(s, ,) L(s, )(1 (tr,)]N-S), which vanishes at
s 0 with the leading term

L’(O, if, ) { L(O,) log p
L’(O, )(1 if(try))

Now suppose G1 Gal(H/K(n)) is nontrivial. One easily finds a character of
G such that [61 and ,(tr,) are nontrivial. For such a , the Kronecker limit for-
mula reads (see [H1])

1 (pl2non)trl2L’(0, Z, ) E /(tr) log
trig

By rewriting the sum over G/G1 and using the orthogonality relations, one con-
eludes that U(0, /,) 0, hence L’(0, ) 0, but the nonvanishing of L’(0, ) is
well known and can be seen, for instance, from H(S) I-I, L(s, k).

COROLLARY 27. If C CI(o) is nontrivial, then (vc) H+.

Proof. The proof is clear.

For the three 4-types of o which are maximal at 2 but for which 2 is not inert,
namely, 2+, 22+, and 23, there is a proper primitive ideal 2 c a of norm 2 whose
corresponding unit u_ is related via a simple formula to the j-invariant of o.
This formula facilitates the computation of the minimal polynomial ofj for large
discriminants by lowering the required numerical precision as follows: one may
first calculate u (and its conjugates) using Lemma 23(v), then use the explicit
expression of j in terms of u, to compute the conjugates of j, which are much
larger and hence would require higher accuracy to compute directly. To explain
the exact connection, we introduce the Weber functions (see [We])

(z) e48(-1) /((z + 1)/2) l(z l(z/2..___) [2(z x/r/(2z)
(z) (z) (z)

which satisfy

ffh / (9)

and are related to j y23 via

f24 16 f4 + 16 f224 + 16
(10)
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The determination of the following "class invariants" (elements of H) was made by
Weber [We, p. 473].

THEOREM 28. For each of the 4-types of a listed in Table 5, 2 is a proper
primitive ideal of a, whose corresponding unit u u, has the indicated expression
in terms of or 1, giving rise to a class invariant that is a unit generator ofH+ the
last column gives an expressionforj(v/) in terms ofu. Moreover, for the 4-type
22+, if do 1 (mod 8), then (f2(x/7)/x/’)w3 is a class invariant.

Proof. All claims follow easily from Lemma 23, with the help of (1), (9), and
(10). For the last statement of (ii), we use the fact that there is an ideal of norm
(do + 1)/2 _= 1 (mod 4) in the class of 2. We leave the remaining details to the
reader.

TABLE 5

4-type ,2

20+ [(1 + x/7-d)/2, 21
22+ [1 + x/7), 2]
23 [x/7-d), 2]

U U2

f2 (.V-s-)/v/

class invariant

(f(x/7)/2)w,

(f4(x/7)/2)w’
(256u24 1)3/u24

64(4U12 1)3/U12

64(4U12 + 1)3/U12

Remark. For an order o of 4-type 20+, j(x/-s-d) is the j-invariant of the lattice
o’ [1, x/E-d] (a suborder of index 2 and type 22) whose ring class field coincides
with that of o. We may express the j-invariant of a itself as

j((1 q- ---)/2)---(16u24- 1)3/U48

because u e48(1)ffl((1 + x/-L-d)/2). For the orders of discdminant -7,-28,-4,
and -8 with class number 1, the unit u u,_ is a rational integer; hence u2 1,
and the above theorem gives the well-known values

j(.1 + V-7.) __3: 5:, j(V/-)-- 3 3 5 3 173,

j(X/-) 26. 3 3 j(X/’) 26. 53

Our results give an efficient method for calculating a defining polynomial for
H/ of reasonably small height. One can choose an ideal I*(6d) that is
not principal, and set 1 r/(C)/r/(o); if mZ satisfies m(]N-1)/2 =0
(mod w12), then n generates H over . If 2 is not principal (only finitely
many o have exponent-2 class group), upon setting 2 /(2)/r/(a), another
generator for H/ is . whenever n(]N2 1)/2 0 (mod w12), and this ele-
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ment sometimes has smaller height. The minimal polynomial of over is
computed easily as g(x)(x), where

the product being over ideals e I*(6ad) representing CI(o). We mention in
passing that 2/2 is a very useful unit (cf. [HI] and [H2] for numerical examples).
For many purposes, a defining polynomial for H+/ suffices and is more

desirable, having half the degree and (usually) much smaller height. For this, one
may compute the minimal polynomial of vc for some nonprincipal class C using
Lemma 23(ii), (v). It helps to choose C with nc as small as possible; by the
remarks following Definition 24, we can usually find a class C with nc 1. As a
simple example, the order o with discriminant -336 -24. 3.7 has class num-
ber 8; the values of nc are 1, 2, 3, 6, each with multiplicity 2. For the unique non-
trivial class C with nc 1 (represented by a prime ideal of norm 37, for
instance), uc has palindromic minimal polynomial

x8 20x7 + 32x6 12x5 + 14x4 12x + 32x2 20x / 1.

Next we will compute the minimal polynomial of 2(0) for the order o with
discriminant -728 =-23. 3.7, which has class number 12. The ideal 92 is in
the same class as a prime ideal 109 of norm 109 1 (mod 12); hence
ua,, ua,lo H+, and we compute its minimal polynomial to be

X12 28x11 d- 96x 10 84x9 24x8 28x7 --46x6

+ 28x5 24x4 + 84x + 96x2 + 28x + 1. (11)

Theorem 28 and (10) give the formula 2(0)= 4(4u,2, + 1)/u,2; the minimal
polynomial of this number is easily calculated from (11); we list its coefficients in
Table 6.
The constant coefficient, in accordance with Gross-Zagier [GZ], factors as

224. 512. 172. 292. 712. 1072. 1792. 257. 521.

Finally, consider the order a of discriminant -24. 5, whose class number is 4.
If C is the unique class of order 2, then nc 1 and uc has minimal polynomial
x4 2x3 2x2 2x + 1; indeed, uc is none other than the elliptic unit first com-
puted by Abel in 1828.
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TABLE 6

12

11

10

6

HAJIR AND VILLEGAS

coefficient of xn

-1866218673280

2506323872824179200

58607751157932094944000

384135771128265194122240000

14758477611576257616179200000

3893282647980279891517824000000

7000669343999430893281280000000

10161922189354110148844748800000000

238507747898545736780777472000000000

223591232748488564563968000000000000

33882930912781849064026931200000000000

246498878625101354212790272000000000000
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