
ON THE TATE-SHAFAREVICH GROUPS OF CERTAIN ELLIPTIC
CURVES

FARSHID HAJIR AND FERNANDO RODRIGUEZ VILLEGAS

Let K ⊂ C be an imaginary quadratic field with prime discriminant −p < −3, ring
of integers OK = O and class group ClK of (odd) order hK = h. The j-invariant j(O)
generates a field F/Q of degree h such that H = FK is the Hilbert class field of K.
Suppose A/F is a Q-curve with j-invariant j(O); thus, A is an elliptic curve which,
over H, is isogenous to each of its Galois conjugates, and has complex multiplication
by O. We let B = ResF/QA be the h-dimensional abelian variety over Q obtained
from A by restriction of scalars. Any two such A (and any two such B) are quadratic
twists of one another: letting A(p) denote the canonical curve of discriminant ideal
(−p3), with restriction B(p), we have A = A(p)D (and B = B(p)D) for some quadratic
discriminant D. We refer the reader to Gross [Gr1] for general facts about CM Q-
curves. Much progress has been made recently on proving the conjecture of Birch and
Swinnerton-Dyer for these curves. For instance, if L(1, A/F ) 6= 0, and h = 1, Rubin
[Ru2] has proved that the Birch-Swinnerton–Dyer conjecture for A/F holds up to a
power of 2. Note that the ring R+ of Q-endomorphisms of B (or B(p)) is an order
in T+ = R+ ⊗ Q, a totally real field of degree h over Q. The Tate-Shafarevich group∐∐

B/Q is a finite module over R+; our main goal in this paper is to gain insight into
the structure of this module via L-series in some special cases.

Namely, suppose p ≡ 3 mod 8 and A = A(p)−3. Also, assume that R+ is integrally
closed. Let ψ be a Hecke character of K such that ψ ◦ NH/K is the Hecke character
attached to A/H. This choice of ψ gives rise to an embedding of T+ in R (see section
2). We define an algebraic integer s 6= 0 in FT+ as a sum of certain modified elliptic
units first introduced by Gross [Gr3] and show that there is a (unique) integral ideal f
of R+ whose lift to FT+ is generated by s. Our starting point is a formula (Theorem 2)
expressing L(1, ψ) as a period times s2, showing, in particular, that this central critical
value does not vanish. Writing L(s,A/F ) as a product of Hecke L-series, calculating
the local factors in the Birch-Swinnerton–Dyer conjecture, and applying our formula
together with results of Coates, Wiles, Arthaud, and Rubin [CW], [Ar], [Ru1], we obtain

Main Theorem(Theorem 5) With the above assumptions and notation, A(F ) = B(Q)
is finite. If the Birch-Swinnerton–Dyer conjecture holds for A/F (or for B/Q), then
the order of its Tate-Shafarevich group is NT+/Q(f)2, where f is the integral R+-ideal
defined in section 2.

Following Buhler-Gross [BG], we conjecture that the order ideal sB of theR+-module∐∐
B/Q is in fact f2; note that, by our theorem, this is compatible with the Birch-

Swinnerton–Dyer conjecture, and is a refinement of it. Our results shore up the Buhler-
Gross conjecture in several ways: namely, our predicted order ideal f2 is known to be the
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square of an integral ideal of R+. Previously, Buhler and Gross verified these properties
numerically in hundreds of cases.

Our formula gives an effective means of computing the (predicted) order ideal of the
Tate-Shafarevich group for these curves, and is similar to the formula one of us [RV]
found for the cardinality of

∐∐
A(p)/F for p ≡ 7 mod 8; see also [H]. We implemented

this procedure on a computer (some tables of our data appear at the end of the paper).
This allowed us to make a numerical study of the R+-module

∐∐
B/Q. We were par-

ticularly interested in the question of whether this module can be “non-trivial,” in the
sense that its order ideal sB is not trivial in the class group of R+. We succeeded in
finding three examples where the (predicted) order ideal f2 is not principal. Using some
results from [H], this answers, at the same time, a question of Gross concerning the
triviality of a certain 1-cocycle induced by the units used to define f. We should remark
that there are order ideals attached to the torsion of B/Q and to its local factors at
the places of bad reduction (see Gross [Gr2]), and that a suitable product of all these
ideals with the order ideal of the Tate-Shafarevich group is expected to be principal
(generated by the algebraic part of the critical L-value), but that these ideals need not
be principal in R+ individually, as demonstrated here.

We should explain that the restriction to the rather special case of twisting by −3
is made in order to keep the technicalities in the calculation of L(1, ψ) (section 5) to
a minimum. The general factorization formula we prove in that section (Proposition
8) should yield a similar formula for L(1, ψ) for more general twists, but in the case
of twisting by −3, the various Jacobi theta functions with characteristics reduce down
to the relatively simple eta function. For higher twists, which we hope to discuss in
the future, the formulas are more involved, and the analogues of the uC ’s are no longer
units.

The organization of the sections is as follows. We set up the notation and make
various definitions in section 1. In section 2, we define the important algebraic quantities
s and f; the action of Galois on them is determined easily using the results of [HRV].
In section 3, we introduce the elliptic curves A of interest, and obtain a formula for
L(1, A/F ), assuming the formula for L(1, ψ) (whose proof, being somewhat technical,
we defer to section 5). A calculation of the various factors in the Birch-Swinnerton–
Dyer conjecture then yields the main theorem. In section 4, we recall the question
of Gross, first posed in [Gr3] and further investigated in [H], and present calculations
carried out using the package GP-PARI, illustrating three examples where the class
of the (predicted) order ideal of the Tate-Shafarevich group is non-trivial, answering
Questions 2.9, 2.10 and 2.13 of [H]. As in [RV], the two main ingredients for expressing
L(1, ψ) as a period times s2 are, first a formula, following Hecke, expressing L(1, ψ)
in terms of binary theta series (section 5.1), and a “factorization formula” expressing
values of these theta series at CM points as a product of values of two half-integral-
weight theta series at related CM points (section 5.2). We conclude with a table of
predicted orders of the Tate-Shafarevich group of A(p)−3, as well as a table of the
ideals f for small p.

1. Preliminaries

Suppose K ⊂ C is an imaginary quadratic field with discriminant −d relatively
prime to 6 and class number h. With the exception of sections 1 and 5, we will in
fact assume d = p is a prime ≡ 3 mod 8. (At the top of each section, we indicate our
assumptions regarding d). We write O = OK for the ring of integers of K. Let ε be
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the Dirichlet character associated to K, extended to K via the natural isomorphism
O/(

√
−d) ∼= Z/dZ; concretely,

ε(α) =
(

2(α+ α)
d

)
(α ∈ OK).

Here and throughout the paper, we use the notation ( ·
· ) for the Kronecker symbol.

We write
(

2
d

)
= (−1)δ with δ = 0, 1. Also, define

κ =
3− ε(3)

2
=

{
1 d ≡ 2 mod 3
2 d ≡ 1 mod 3.

(1)

Consider the set Φ of Hecke characters φ of K such that

φ((α)) = ε(α)α, α ∈ OK , (α, d) = 1.

There are exactly h such characters, they all have conductor (
√
−d), the ratio of any

two being a character of ClK . Let χ be the quadratic Dirichlet character associated
to Q(

√
−3),i.e. χ(a) =

(−3
a

)
=

(
a
3

)
for integers a prime to 3 and χ(a) = 0 otherwise.

Consider the set Ψ of twists ψ = φ · χ ◦ NK/Q with φ ∈ Φ. If a is not relatively prime
to 3d, ψ(a) = 0, and, for all a, ψ(a) = ψ(a). Also,

ψ(a)ψ(a) = Na. (2)

For the remainder of the paper, fix a base point φ0 ∈ Φ and its χ-twist ψ0 ∈ Ψ; their
unramified twists φ0ϕ, ψ0ϕ – with ϕ ∈ ĈlK – span Φ, Ψ, respectively.

We will need two kinds of CM-points attached to an ideal a of O: one, denoted τa, at
which we will evaluate integral-weight modular forms (of level d) , and another, denoted
za, for half-integral-weight modular forms (of level a power of 2). For a primitive O-
ideal a of norm a prime to 6d, we may always choose a basis a = aZ + b+

√
−d

2 Z with
b ∈ Z determined modulo 2a satisfying b2 ≡ −d mod 4a. In particular, we may choose
b ∈ 3dZ, and put

τa =
b+

√
−d

2ad
∈ H (a = [a,

b+
√
−d

2
], b ≡ 0 mod 3d),

which is well-defined modulo 3Z and whose image in H/Γ0(d) depends only the class
[a]. Similarly, we may always choose b ≡ 1 mod 16 and then set

za =
b+

√
−d

2a
∈ H (a = [a,

b+
√
−d

2
], b ≡ 1 mod 16),

well-defined modulo 8Z.

2. The units uC and the ideal f

In this section, we assume that d = p > 3 is a prime satisfying p ≡ 3 mod 8, so δ = 1
and h is odd. Let j = j(O) ∈ R where j(L) is the classical modular invariant of a lattice
L ⊂ C. Let F = H+ = Q(j) ⊂ R; this is a number field of degree h whose remaining
embeddings are complex. Recall that H = H+K is the Hilbert class field of K.

Let T = Tφ0 be the subfield of C generated by the values of φ0, and put T+ = T ∩R.
Then T+ is totally real of degree h over Q and T/T+ is a CM extension. Let M+ =
T+H+, M = M+K. Then T ∩H = K, and we may identify ĈlK with the embeddings
of M/H in C, the trivial character corresponding to our fixed embedding Tφ0 . For
instance, for x ∈ H, ϕ ∈ ĈlK , and a ⊆ O, we have (φ0(a)x)ϕ = (ϕφ0)(a)x. Also,
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we may identify ClK with Gal(M/T ) via the Artin map C 7→ σC . For more detailed
explanations of these facts, we refer the reader to Gross [Gr1].

Recall that the Dedekind eta function defined for z ∈ H by

η(z) = eπiz/12
∏
n≥1

(1− e2πizn)

has the series expansion

η(z) =
∑
m≥1

(
12
m

)
eπim2z/12, (3)

which converges quickly, when =(z) is bounded below by a positive constant.

Definition 1. For each ideal class C, choose a primitive ideal a prime to 6d such that
[a2] = C−1 and put

uC =
(
−4
Na

)
φ0(a)−1η(za2)/η(zO).

Remark. That uC is well-defined may be checked directly; it also follows easily from
Corollary 10 which we will establish in section 5. For d ≡ 7 mod 8, the units uC were
introduced already in [RV]; the definition in the two cases differs only by the factor
(−4

Na )δ. In the proof of [H, Theorem 3.1], the presence of this symbol should have been
mentioned.

To see the algebraic properties of uC , we note that, in the notation of [HRV],

η(za2)
η(zO)

=
η(a2)
η(O)

,

hence by [HRV, Prop. 10] η(za2)/η(zO) ∈ OH and generates aOH . Since φ0(a) ∈ OT

and generates aOT , uC is a unit in M . Moreover, by [HRV, Prop. 10],

uC = uC−1 , u
σC′
C = uCC′/uC′ (C,C ′ ∈ ClK).

We see that these units give rise to a 1-cocycle with values in EM = O×M . In order to
maintain consistency with the notation in [H], let us write for σ = σC ∈ Gal(M/T ),
wσ = uC . The assignment

σ− 7→ 1, σ 7→ wσ,

(where σ− is a generator of Gal(M/M+) and σ ∈ Gal(M/T )) defines a 1-cocycle w on
Gal(M/T+) with values in EM .

We let s =
∑

C∈ClK
uC ∈ OM . It is easily verified that TrM/H(s) = h, and that

sϕ = sϕ for each ϕ ∈ ĈlK ; hence, sϕ is a non-zero real number. Furthermore,

sσC = su−1
C , (C ∈ ClK).

In particular, the integral ideal sOM is fixed by Gal(M/T ). Since M/T is unramified,
and since s = s, there is a unique ideal f of OT+ such that fOM = sOM . Note that fh

is principal, generated by s
∏

C uC ∈ OT+ ; we will be interested in whether f itself is
principal in OT+ . We note that in [H], s and f were called sw and fw, respectively.

Section 5 will be devoted to the proof of

Theorem 2. For any unramified character ϕ ∈ ĈlK ,

L(1, ψ0ϕ) =
4πκ|η(zO)|2

31/2p1/4
(sϕ)2.
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3. The Q-curve A(p)−3

In this section, we continue to assume that d = p > 3 is a prime satisfying p ≡
3 mod 8. There is an elliptic curve A(p) of invariant j = j(O) with global minimal
equation of discriminant (−p3) over H+

y2 = x3 +
mp

243
x− np2

2533
,

where m,n are the unique real numbers defined by

m3 = j, −n2p = j − 1728, n < 0.

Using the classical theory of complex multiplication, one shows that m,n are actually
elements of H+; see, for example, [HRV, Theorem 17]. Over H, A(p) acquires complex
multiplication by OK , and is isogenous to all of its Galois conjugates.

Consider the elliptic curve A = A(p)χ = A(p)−3, the twist of A(p) by Q(
√
−3). The

CM elliptic curve A has associated Hecke character ψ0 ◦ NH/K . By Shimura [Sh], we
have the factorization

L(s,A/H+) =
∏

ϕ∈ĈlK

L(s, ψ0ϕ). (4)

Recall that B = ResH+/QA is the abelian variety over Q obtained from A via restric-
tion of scalars. It is an h-dimensional quotient of the Jacobian J0(9p2) of the modular
curve X0(9p2). The L-series of A/H+ and B/Q coincide; the Birch-Swinnerton–Dyer
conjecture holds for one if and only if it holds for the other, and

∐∐
A/H+ and

∐∐
B/Q

are isomorphic, see Milne [Mi, Theorem 1]. The Q-endomorphism ring R+ = EndQB
is an order in T+ = R+ ⊗ Q with a simple description: it is the ring generated over
Z by the values φ0(a) + φ0(a) as a runs over integral ideals of OK . For simplicity, let
us assume R+ = OT+ ; our computations indicate that this is often the case, and, in
general, R+ is maximal locally at primes away from h. (We are not aware, however,
of a general criterion guaranteeing the maximality of R+.) This ring acts on

∐∐
B/Q,

and we are interested in the order ideal, or characteristic ideal, sB , of this R+-module.
Following Buhler-Gross [BG], we have the following conjecture.

Conjecture 3 (Refined Birch-Swinnerton–Dyer Conjecture). For a prime p > 3 satis-
fying p ≡ 3 mod 8, and B = B(p)−3, sB = f2.

Since the norm of the order ideal is the cardinality of the module, in order to check
that this conjecture is consistent with that of Birch and Swinnerton–Dyer, we must
verify that the latter predicts the order of

∐∐
B/Q to be NT+/Q(f)2. This is our main

result (Theorem 5), and is proved below.

We follow Manin’s notation and setup for the Birch-Swinnerton–Dyer conjecture
[Ma]. For instance, for a place v of H+, we denote the local factor |A(H+

v )/A(H+
v )0|

by mv. The primes of bad reduction for A/H+ are the primes above p and those above
3; for all other finite places v, mv = 1.

Lemma 4. With κ as defined in (1), the local factors mv (for v a place of H+) satisfy

i)
∏

v|pmv = 2h;

ii)
∏

v|3mv = κh;

iii)
∏

v|∞mv = 2−(h−1)/2
(
2π|η(zO)|23−1/2p−1/4

)h ∏
C∈ClK

u2
C .
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Proof. For i) and iii), we refer to the calculation of the same quantities for A(p) in [RV,
pp. 568-570], as they require little or no modification for A(p)−3. For ii), we note that
(
∏

v|3mv)2 =
∏

w|3 |B(Kw)/B(Kw)0|, where w runs over the primes of K dividing 3
and B = ResH+/QA, then use the formula on p. 232 of Gross [Gr2].

Theorem 5. The group of rational points A(H+) is trivial. The conjecture of Birch
and Swinnerton-Dyer predicts that the cardinality of

∐∐
A/H+ is NT+/Q(f)2, where f is

the integral R+-ideal defined in section 2.

Proof. By Theorem 2, and the factorization (4), L(1, A/H+) 6= 0 since sϕ 6= 0 for all
ϕ ∈ ĈlK . A theorem of Arthaud [Ar] and Rubin [Ru2], extending the Coates-Wiles
theorem [CW], implies that A/H+ has rank 0. By Gross [Gr1], A(H+) is torsion-
free, hence trivial. Our base field H+ has r2(H+) = (h − 1)/2 many pairs of complex
embeddings and discriminant disc(H+/Q) = p(h−1)/2. When we combine Theorem 2
with Lemma 4 and compare with the Birch-Swinnerton–Dyer conjecture

L(1, A/F ) ?=
|
∐∐

A/F |
|A(F )tor|2

2r2(F )

|disc(F/Q)|1/2

∏
v

mv,

we find that the predicted order of
∐∐

A/H+ is S2 where

S =
∏

ϕ∈ĈlK

sϕ
∏

C∈ClK

u−1
C . (5)

Using NT+/Q(f)h = ±NM+/Q(s), it is easily shown ([H, Lemma 2.7.v]) that S is a
generator of the Z-ideal

∏
σ∈ClK

fσ, i.e. S = ±NT+/Q(f) ∈ Z, completing the proof.

4. The class of the order ideal, and a question of Gross

We continue to assume that d = p > 3 is a prime satisfying p ≡ 3 mod 8. Let us
return to the cocycle w defined in section 3. It is easily seen that the cohomology class
[w]h is trivial, split by

∏
σ w

−1
σ , and it is natural to ask whether [w] itself is trivial in

H1(Gal(M/T+), EM ). Indeed, Gross [Gr3] constructed units (called uσ in [H]) which
are essentially the squares of wσ and asked the same question about their cohomology
class [u]. The classes [u] and [w] in fact are either both trivial or both non-trivial; for
more details, see [H], especially Theorem 3.4 and Questions 2.9, 2.10, 2.13.

Question 2.10 was answered in the negative in [H] by calculating some examples;
here we will do the same for Questions 2.9 and 2.13 of [H]. Before doing so, we recall
([H, Theorem 2.12]) that the cohomology class of w is trivial if and only if the ideal
class of f in ClT+ is trivial. Hence, assuming the above refined Birch-Swinnerton–Dyer
conjecture, Gross’ original question boils down to whether the ideal class of the Tate-
Shafarevich order ideal of B/Q is trivial in the class group of R+. The difficulty in
finding non-trivial examples is that the class number of T+ is seldom greater than 1
and very seldom has a non-trivial factor in common with h, which is what we need since
[f] is killed by h. In one case previously investigated where hT+ and h have a factor
in common, namely p = 4027, it turned out that f was principal [H]. Here we present
three examples where the predicted order ideal of

∐∐
B/Q, i.e. f2, is not principal in

R+, though of course it capitulates in M+. Let us write |
∐∐

|? for the order of
∐∐

B/Q
as predicted by Birch–Swinnerton-Dyer, namely S2 where S is given by (5).
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Example 1. p = 571, h = 5, |
∐∐

|? = 42, f = p2
2, where p2 is the unique prime of degree

1 above 2. Here, p2 generates the ideal class group of R+ = OT+ (it has order 5), hence
f and f2 are not principal. A defining polynomial for T+ is x5 − 24x3 + 125x− 58.

Example 2. p = 1523, h = 7, |
∐∐

|? = 24852, f = p5p7p71; as before, pr is the unique
prime of degree 1 above r. The class group of R+ = OT+ has order 7 and f generates
it. We have R+ ∼= Z[θ] where θ is a root of x7 − 21x5 + 126x3 − 189x+ 85.

Example 3. p = 3019, h = 7, |
∐∐

|? = 153732. The prime 15373 splits into 7 prime
ideals in R+ = OT+ , one of which is f. All seven of these primes give rise to the same
non-trivial class in the class group of R+, which has order 7. If the predicted order is
in fact correct, then

∐∐ ∼= (R+/f)2 as R+-modules. A defining polynomial for T+ is
x7 − 35x5 + 350x3 − 875x+ 514.

Remarks. 1) These calculations were carried out in GP/Pari [B] on a Power Comput-
ing Power 100. We double-checked the calculation of L(1, A/H+) by using the standard
algorithm [BG] as well.

2) In examples 1 and 3, the class of the different in R+ is not principal, so there is
no power basis for R+/Z. According to de Smit [dS], the non-triviality of the class of
the different implies that, as Z-algebra, R+ is not a complete intersection. Note that
R+ is a quotient of the Hecke algebra T ⊂ End(J0(9p2)).

5. Calculating L(1, ψ)

We now give a proof of Theorem 2. We divide this section into three parts. In the
first two subsections, we relax the condition on the discriminant −d, requiring only that
it be prime to 6. In the third subsection, we return to the case where d = p > 3 is a
prime ≡ 3 mod 8, and complete the proof of Theorem 2.

5.1. Eisenstein series of weight 1. For an ideal a of OK prime to 6d, define a partial
Hecke series

Z(s, a) =
1
2

∑′

λ∈a

ε(λ)χ(|λ|2)λ
|λ|2s

, (<(s) > 3/2).

As usual, the prime indicates that the sum is over the non-zero elements of a. Via a
standard argument, one expresses the Hecke L-series L(s, ψ) =

∑
b⊆OK

ψ(b)Nb−s in
terms of the Z(s, a):

L(s, ψ) =
∑

[a]∈ClK

ψ(a)
Na1−s

Z(s, a). (6)

Recall the Eisenstein series (of weight 1 and character ε on Γ0(d))

G1,ε(z) =
1
2

∑′

m,n∈Z

ε(n)
mdz + n

(z ∈ H),

which is not an absolutely convergent series, but is summed by the Hecke trick

G1,ε(z) =
1
2

∑′

m,n

ε(n)
mdz + n

1
|mdz + n|2s

∣∣∣∣∣
s=0

. (7)

Its Fourier expansion is given by Hecke [He, Werke p. 454]

G1,ε(z) = L(1, ε) +
2π√
d

∑
n≥1

rne
2πinz, (8)
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where rn =
∑

m|n ε(m) is the number of ideals of norm n in OK . For an ideal a of OK ,
the associated binary theta series

Θa(z) =
1
2

∑
b⊆OK ,[b]=[a]

e2πizNb (z ∈ H),

is a weight-one modular form (on Γ0(d) with character ε) which depends only on the
class [a] ∈ ClK . By (8) and Dirichlet’s class number formula (L(1, ε) = πh/

√
d), the h

binary series of discriminant −d add up to a constant times G1,ε:

G1,ε(z) =
2π√
d

∑
[a]∈ClK

Θa(z). (9)

In [RVZ], L(1, φ) was expressed as a sum of values of G1,ε at CM-points. Here we do
the same for L(1, ψ), but the expression is, at least initially, more complicated as we
must pass through an intermediary twisted Eisenstein series

G1,ε,χ(z) =
1
2

∑′

m,n

ε(n)χ(m2d+ n2)
mdz + n

,

again summed via Hecke’s trick. One way to calculate the Fourier expansion of G1,ε,χ

is to relate it to G1,ε.

Lemma 6. For all z ∈ H, G1,ε,χ(z) = κ(G1,ε(3z)− 1
3G1,ε(z/3)).

Proof. We can break up the sum (7) according to congruence classes modulo 3, and
verify:

1
2

∑
m ∈ 3Z
n 6∈ 3Z

ε(n)
mdz + n

1
|mdz + n|2s

∣∣∣∣
s=0

= G1,ε(3z)−
ε(3)
3
G1,ε(z),

χ(d)
1
2

∑
m 6∈ 3Z
n ∈ 3Z

ε(n)
mdz + n

1
|mdz + n|2s

∣∣∣∣
s=0

= χ(d)
ε(3)
3

(G1,ε(z/3)−G1,ε(z)),

χ(d+ 1)
1
2

∑
m 6∈ 3Z
n 6∈ 3Z

ε(n)
mdz + n

1
|mdz + n|2s

∣∣∣∣
s=0

=

χ(d+ 1)[(1 + ε(3)/3)G1,ε(z)− G1,ε(3z)−
ε(3)
3
G1,ε(z/3)].

Adding these together, and taking note of the identities χ(d) = −ε(3), χ(d + 1) =
(ε(3)− 1)/2, we get the desired formula.

We are now ready to express the critical value L(1, ψ) in terms of binary theta series
evaluated at CM points.

Lemma 7. With κ as in (1), we have

L(1, ψ) =
2πκ√
d

∑
[a],[a1]∈ClK

ψ(a)−1(Θaa1(3τa)−
1
3
Θaa1(τa/3)).
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Proof. Suppose a is primitive and has norm a prime to 6d. Elements λ ∈ a correspond
to integer pairs m,n via λ = a(mdτa + n); for this λ, one easily checks that ε(λ) =
ε(n), χ(|λ|2) = χ(m2d+ n2). Hence

Z(s, a) =
a1−2s

2

∑′

m,n

ε(n)χ(m2d+ n2)(mdτa + n)
|mdτa + n|2s

, (<(s) > 3/2).

In particular,

Z(1, a) = a−1G1,ε,χ(τa). (10)

Combining (10) with (2) and (6), and using Lemma 6 together with (9), we arrive at
the desired formula.

5.2. A factorization formula. Our goal in this subsection is to express each term in
the sum appearing in Lemma 7 as a product of two η-values times simple constants.
We derive this from a suitable generalization of the factorization formula of Rodriguez
Villegas and Zagier [RVZ], which reads∑

m,n∈Z
e2πi(mν+nµ)eπ(imn−Qz(m,n))/a =

√
2ay θ[

aµ
ν

](z/a) θ[
µ
−aν ](−az),

(11)

where a is a positive integer, z = x+ iy ∈ H, Qz(m,n) = |mz − n|2/2y is a quadratic

form of discriminant −1, and the theta function θ[
µ
ν

] with arbitrary characteristics

µ, ν ∈ Q is defined by

θ[
µ
ν

](z) =
∑
n∈Z

eπi(n+µ)2z+2πiν(n+µ).

More generally, for any function f on Z, we put

θf [
µ
ν

](z) =
∑
n∈Z

f(n)eπi(n+µ)2z+2πiν(n+µ).

For later reference, we note the identities

θ[
µ+ r
ν

](z) = θ[
µ
ν

](z), θ[
µ

ν + r
](z) = e2πiµrθ[

µ
ν

](z), (r ∈ Z).
(12)

For a positive integer N , and a function g modulo N , recall that the (finite) Fourier
Transform ĝ of g is defined by

ĝ(s) =
∑

rmodN

g(r)eN (−rs),

where eN (x) = e2πix/N . For an integer a relatively prime to N , and functions f, g
modulo N , we introduce the (finite) Wigner Transform W

(a)
f,g defined (as a function of

pairs of integers modulo N) by

W
(a)
f,g (m,n) =

∑
r,smodN

f(r)ĝ(s)eN (ars)eN (ms+ nr).

(For the classical Wigner transform, see Folland [Fo]). A simple change of variables
yields the expression

W
(a)
f,g (m,n) = N

∑
rmodN

f(r)g(ar +m)eN (rn). (13)

We are now ready to state the promised factorization formula.
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Proposition 8. Suppose a,N are relatively prime positive odd integers, and µ, ν are
rational numbers; assume that the denominator of µ is relatively prime to N . For
functions f, g modulo N , and z = x+ iy in the upper half-plane, we have∑

m,n∈Z
e2πi(mν+nµ)W

(a)
f,g (m,n)eπ(imn−Qz(m,n))/aN =

N
√

2yaN θg[
aNµ
ν

](z/aN) θf [
Nµ
−aν ](−az/N).

Proof. Suppose r, s are integers and that sµ ∈ Z. We consider the factorization formula
(11) with new parameters µ + r/N, ν + s/N, aN in place of µ, ν, a, and multiply both
sides by f(r)ĝ(s)eN (ars), then add over r, s modulo N to get∑

m,n∈Z
e2πi(mν+nµ)W

(a)
f,g (m,n)eπ(imn−Qz(m,n))/aN =

√
2yaN

∑
smodN

ĝ(s)θ[
aNµ

ν + s/N
](z/aN)

∑
rmodN

f(r)θ[
µ+ r/N
−aNν ](−aNz).

In the first sum on the right hand side of the above equation, we may choose represen-
tatives s mod N with sµ ∈ Z since N is prime to the denominator of µ. It remains to
simplify the two sums of theta series. First, the sum over s:∑

smodN

ĝ(s)θ[
aNµ

ν + s/N
](z/aN) =

∑
m∈Z+aNµ

∑
smodN

ĝ(s)eN (sm)e2πiνme2πim2z/aN

=
∑
n∈Z

Ng(n)e2πiν(n+aNµ)eπi(n+aNµ)2z/aN

= Nθg[
aNµ
ν

](z/aN).

For the sum over r, we write:∑
rmodN

f(r)θ[
µ+ r/N
−aNν ](−aNz) =

∑
m∈Z+µ+r/N

f(r)e−2πimaNνe−πim2aNz,

then make a change of variables

m = µ+ n/N n ∈ Z, n ≡ r mod N, m2 = (n+Nµ)2/N2,

to get

=
∑

rmodN

∑
n≡rmodN

f(n)e2πi(−aν)(n+Nµ)eπi(n+Nµ)2(−az/N)

= θf [
Nµ
−aν ](−az/N).

This completes the proof.

Proposition 9. For ideals a, a1 of OK relatively prime to 6d and to each other,

Θaa1(3τa)−
1
3
Θaa1(τa/3) =

2δd1/4

√
3a1

(
3
a

)
η(za2a1)η(za1).

Proof. We first plug in µ = 1/2, ν = δ/2, f = g = χ into the factorization formula and
use the identity

θχ[
3r/2
s/2 ](z/3) = 2δe3πirs/4(

−4
r

)η(z), (r ≡ 1 mod 2, s ≡ δ mod 2, z ∈ H),
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which is easily verified using (3), to obtain∑
m,n∈Z

(−1)mδ+nW (a)
χ,χ(m,n)eπ(imn−Qz(m,n))/3a = 12δ

√
6ya

(
−4
a

)
η(z/a)η(az).

(14)

Recall that for z = x+ iy, Qz(m,n) = |mz − n|2/2y. We may choose a basis

a2a1 = [a2a1, (b+
√
−d)/2], b ∈ 3dZ, b ≡ 1 mod 16,

and put

z =
b+

√
−d

2aa1
,

so that a1z/d = τa, z/a = za2a1 , and az = za1 . The integer c = (b2 + d)/4aa1 is odd
and divisible by a. To simplify the notation, let

Q(m,n) = Qz(m,n)/
√
d = cm2 − bmn+ aa1n

2

be a quadratic form associated to aa1 = aa1[1, z]. Substituting the congruence

π(imn−Qz(m,n))/3a ≡ 2πi(Q(m,n)τa/3 +
mδ + n

2
− amn/3) mod 2πiZ

into (14), we find∑
m,n∈Z

W (a)
χ,χ(m,n)e3(−amn)e2πiQ(m,n)τa/3 = 12δd1/4

√
3/a1

(
−4
a

)
η(za2a1)η(za1).

It is easy (using (13), say) to verify that

1
3
W (a)

χ,χ(m,n)e3(−amn) =

{
2χ(a) if m ≡ n ≡ 0 mod 3,
−χ(a) otherwise.

Plugging this into the previous equation yields the result since

Θaa1(3τa) =
1
2

∑
m,n∈3Z

e2πiQ(m,n)τa/3.

¿From the transformation properties of the modular form Θa(z) under homotheties of
a and under the Γ0(d)-action on z, we deduce the following:

Corollary 10. Suppose a, a1 are as in the Proposition, and that d ≡ 3 mod 8. Then,(
−4
Na

)
φ(a)−1η(za2a1)

depends only the Hecke character φ, the ideal a1 and the ideal class [a] of a.

When d ≡ 7 (mod 8), i.e. δ = 0, we see from Proposition 9, together with (10) and
(9), that each Z(1, a) vanishes, in particular L(1, ψ) = 0. Of course, the latter also
follows easily from the calculation of the sign in the functional equation of L(s, ψ) [Gr1,
Theorem 19.1.1].
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5.3. Proof of Theorem 2. Suppose d = p > 3 is ≡ 3 mod 8. We are finally ready to
write L(1, ψ) as a period times the square of a non-zero algebraic integer in M+.

Proof of Theorem 2. Combining Proposition 9 and Lemma 7, we have

L(1, ψ0ϕ) =
4πκ

31/2p1/4

∑
[a],[a1]

(ϕψ0)(a)−1

√
a1

(
3
a

)
η(za2a1)η(za1).

Since h is odd, every ideal class is representable by a square ideal. Now we change
variables twice, first replacing a1 by a2

1, then replacing a by aa−1
1 to get

L(1, ψ0ϕ) =
4πκ

31/2p1/4

∑
[a],[a1]

(ϕψ0)(a)−1

(
3
a

)
η(za2)

(ϕψ0)(a1)
a1

(
3
a1

)
η(za2

1
)

=
4πκ

31/2p1/4

∣∣∣∣∣∣
∑
[a]

(ϕψ0)(a)−1

(
−4
Na

)
η(za2)

∣∣∣∣∣∣
2

=
4πκ|η(zO)|2

31/2p1/4

∣∣∣∣∣ ∑
C∈ClK

uϕ
C

∣∣∣∣∣
2

.

This completes the proof, since sϕ is real.

Corollary 11. For ψ ∈ Ψ, L(1, ψ) > 0.

6. Tables

In this section, we present the results of numerical calculations in the form of a
few tables. In the first table, for primes 3 < p < 3000, congruent to 3 modulo 8, we
list p, h, and S = ±NT+/Q(f) (computed via (5)), the square root of the predicted
order of

∐∐
B/Q. Since uC is a unit, it is immediate from our formula that A(p)−3

has trivial predicted Tate-Shafarevich group for the class number one discriminants
−p = −11,−19,−43,−67,−163. Of the 108 cases listed in table 1, 44 have even S, 39
have S divisible by 3, and 20 have S divisible by 5. None has S divisible by p.

In the second, third and fourth tables, for primes p ≡ 3 mod 8 such that Q(
√
−p)

has class number h = 3, 5, or 7, and such that R+ is the maximal order OT+ , we list
p and f, the ideal whose square is conjecturally the order ideal of the Tate-Shafarevich
group of B/Q. In all cases other than the three detailed in section 4, the R+-ideal f is
principal. The notation for these tables is as follows: pr denotes a prime of degree one
over the rational prime r, and and qr,f denotes a prime of degree f > 1 over r. When
there is more than one prime of degree 1, respectively of degree f > 1, in R+, we write
instead p′r, p

′′
r , . . . , respectively q′r,f , q

′′
r,f , . . . . In the latter cases, we have not specified

exactly which ideals occur in f, in order to keep the notation from becoming even more
cumbersome. Note that primes of degree one are much more prevalent.

Finally, we take this opportunity to make a few remarks on a table (for the curve
A(p), p ≡ 7 mod 8), which appears in [RV]; it was noted in that paper that within the
range of calculations (p < 3000) the number S(p) (whose square is the predicted order
of

∐∐
A(p)/F ) was rarely even, and never divisible exactly by 2. The latter part of this

observation is easily explained: it was shown by Gross [Gr1] that Gal(H/K), a group of
odd order, acts non-trivially (indeed without fixed points) on the 2-part of

∐∐
A(p)/F ,

and this action commutes with the Cassels-Tate pairing. It follows (e.g. from Iwasawa
[Iw]) that the 2-rank of

∐∐
A(p)/F , if non-zero, is at least 2f where f is the minimum,
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over prime divisors q of h, of the order of 2 in (Z/qZ)∗. As for the rarity of
∐∐

A(p)/F of
even order, Gross has pointed out that there is heuristic evidence (and we have verified
numerically) that the 2-part of this group is trivial if and only if the 2-part of the class
group of F is trivial. Lenstra’s heuristic suggests that the latter should often be the
case (again sustained by numerical data [Ha]) since the class group of F is non-cyclic
whenever it is not trivial.
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p h S |S|
11 1 1 1
19 1 1 1
43 1 1 1
59 3 −3 3
67 1 1 1
83 3 −5 5
107 3 −1 1
131 5 −6 2 · 3
139 3 −1 1
163 1 1 1
179 5 20 22 · 5
211 3 3 3
227 5 8 23

251 7 358 2 · 179
283 3 −11 11
307 3 −8 23

331 3 −7 7
347 5 −36 22 · 32

379 3 −13 13
419 9 2143 2143
443 5 100 22 · 52

467 7 44 22 · 11
491 9 −105 3 · 5 · 7
499 3 −9 32

523 5 11 11
547 3 12 22 · 3
563 9 381 3 · 127
571 5 −4 22

587 7 90 2 · 32 · 5
619 5 15 3 · 5
643 3 13 13
659 11 473 11 · 43
683 5 −31 31
691 5 19 19
739 5 4 22

787 5 −15 3 · 5
811 7 246 2 · 3 · 41
827 7 −152 23 · 19
859 7 289 172

883 3 7 7
907 3 25 52

947 5 −15 3 · 5
971 15 702121 73 · 23 · 89
1019 13 −176 24 · 11
1051 5 89 89
1091 17 311264513 72 · 67 · 94811
1123 5 144 24 · 32

1163 7 166 2 · 83
1171 7 −23 23
1187 9 −9354 2 · 3 · 1559
1259 15 34101824 26 · 23 · 23167
1283 11 −207248 24 · 12953
1291 9 −187 11 · 17
1307 11 1739184 24 · 3 · 19 · 1907

p h S |S|
1427 15 −26904385 5 · 71 · 75787
1451 13 761379 3 · 17 · 14929
1459 11 −74928 24 · 3 · 7 · 223
1483 7 8 23

1499 13 45498 2 · 3 · 7583
1523 7 2485 5 · 7 · 71
1531 11 −22720 26 · 5 · 71
1571 17 242697813 3 · 199 · 223 · 1823
1579 9 7611 3 · 43 · 59
1619 15 −88275739 29 · 401 · 7591
1627 7 747 32 · 83
1667 13 9626039 9626039
1699 11 −33342 2 · 3 · 5557
1723 5 −175 52 · 7
1747 5 −190 2 · 5 · 19
1787 7 −1942 2 · 971
1811 23 −27172020350 2 · 52 · 43 · 12638149
1867 5 −609 3 · 7 · 29
1907 13 303885 33 · 5 · 2251
1931 21 −119115284992 29 · 11 · 21149731
1979 23 640380659636 22 · 19 · 491 · 17161021
1987 7 2307 3 · 769
2003 9 −229719 3 · 7 · 10939
2011 7 54 2 · 33

2027 11 144642 2 · 3 · 24107
2083 7 −13409 11 · 23 · 53
2099 19 39574291187 83 · 476798689
2131 13 −4031 29 · 139
2179 7 −108 22 · 33

2203 5 −286 2 · 11 · 13
2243 15 −12460096 26 · 112 · 1609
2251 7 1008 24 · 32 · 7
2267 11 1598897 1598897
2339 19 −27980957102 2 · 7 · 523 · 3821491
2347 5 635 5 · 127
2371 13 90441 32 · 13 · 773
2411 23 −237374573222 2 · 37 · 1163 · 2758181
2459 19 96436584 23 · 32 · 67 · 19991
2467 7 72713 19 · 43 · 89
2531 17 20814832370 2 · 5 · 73 · 547 · 52127
2539 11 24685 5 · 4937
2579 21 −6427649341 6427649341
2659 13 371447 371447
2683 5 15 3 · 5
2699 15 1378519456 25 · 43 · 1001831
2707 7 −4901 132 · 29
2731 11 −1092 22 · 3 · 7 · 13
2803 9 29181 3 · 71 · 137
2819 21 −5427534418429 23 · 37 · 6377831279
2843 15 4551355173 3 · 1517118391
2851 11 −25563 3 · 8521
2939 29 1677457225439091 34 · 31 · 151 · 33937 · 130363
2963 13 −96843276 22 · 36 · 33211
2971 11 95873 95873
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p f

59 p3

83 p′5
139 (1)
211 p3

283 p11

307 p
′2
2 · p

′′

2

379 p13

499 p2
3

547 p′2 · p
′′

2 · p3

883 p7

907 p
′2
5

h = 3

p f

131 p2 · p3

179 p2
2 · p5

227 p3
2

523 p′11
571 p2

2

619 p3 · p5

683 p31

691 p′19
787 p3 · p5

947 p3 · p5

1747 p2 · p5 · p19

1867 p3 · p7 · p′29
2203 p2 · p11 · p13

2347 p5 · p127

2683 p3 · p5

h = 5

p f

251 p2 · p179

467 p2
2 · p11

587 p2 · p2
3 · p5

811 p2 · p3 · p41

827 p3
2 · p19

859 p2
17

1171 p23

1483 p3
2

1523 p5 · p7 · p71

1627 p2
3 · p83

1787 p2 · p971

1987 p3 · p769

2011 p2 · q′3,3

2083 p11 · p23 · p53

2179 p2
2 · p3

3

2251 p4
2 · p2

3 · p7

2467 p19 · p43 · p89

3019 p15373

3067 p4
2 · p5683

3187 p2 · p3

3907 p8
2 · p3 · p2

5

4603 p2
3 · p′83

5107 p2 · p2
7 · p673

5923 p11 · p14879

h = 7
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