Hypergeometric families of Calabi-Yau manifolds

Fernando Rodriguez Villegas

Department of Mathematics University of Texas at Austin Austin, TX 78712

Hypergeometric Weight Systems

By a hypergeometric weight system we will mean a formal linear combination

$$\gamma = \sum_{\nu > 1} \gamma_{\nu}[\nu],\tag{0.1}$$

where $\gamma_{\nu} \in \mathbf{Z}$ are zero for all but finitely many ν , satisfying the following two conditions

(i)
$$\sum_{\nu \ge 1} \nu \gamma_{\nu} = 0$$
(ii)
$$d = d(\gamma) := -\sum_{\nu \ge 1} \gamma_{\nu} > 0$$
(0.2)

We denote by Γ the set of all such γ . Note that Γ is a cone, i.e. if $\gamma, \gamma' \in \Gamma$ then $\gamma + \gamma' \in \Gamma$. We call d the dimension of the weight system γ .

To $\gamma \in \Gamma$ we associate the hypergeometric function

$$u(\lambda) := \sum_{n>0} u_n \lambda^n \tag{0.3}$$

where

$$u_n = \prod_{\nu \ge 1} (\nu n)!^{\gamma_{\nu}} .$$

It is easy to check that for some minimal r we have

$$u(\lambda) = {}_r F_{r-1} \begin{pmatrix} \alpha_1 & \cdots & \alpha_r \\ \beta_1 & \cdots & \beta_r \end{pmatrix} \frac{\lambda}{\lambda}_0 ,$$

where

$$\lambda_0^{-1} := \prod_{\nu \ge 1} \nu^{\nu \gamma_\nu} \ ,$$

I would like to thank the NSF, TARP and the Alfred P. Sloan Foundation for financial support.

and $0 \le \alpha_1 \le \alpha_2 \le \cdots \le \alpha_r < 1$ and $0 \le \beta_1 \le \beta_2 \le \cdots \le \beta_r < 1$ are two sets of r rational numbers. We call $\lambda_0 = \lambda_0(\gamma)$ and $r = r(\gamma)$, respectively, the *special point* and the rank of γ .

The condition 0.2 (i) precisely guarantees that the linear differential equation (of order r) satisfied by u has only regular singularities.

By Stirling

$$u_n \sim \frac{\sqrt{D}}{(2\pi n)^{d/2}} \, \lambda_0^{-n}$$

where

$$D := \prod_{\nu \ge 1} \nu^{\gamma_{\nu}} \ .$$

It will be convenient to introduce

$$P(t) := \prod_{\nu \ge 1} (1 - t^{\nu})^{\gamma_{\nu}}$$

the Poincaré series of γ .

Note that

$$d =$$
order of pole of P at $t = 1$ (0.4)

and

$$D = \prod_{\nu > 1} \left(\frac{1 - t^{\nu}}{1 - t} \right)^{\gamma_{\nu}} \Big|_{t=1} = (-1)^{d} \left[(t - 1)^{d} P(t) \right] \Big|_{t=1},$$

is $(-1)^d$ times its leading coefficient at t=1. If we write

$$P(t) = (-1)^d \frac{A(t)}{B(t)}$$

in lowest terms, with $A,B\in\mathbf{Z}[t]$ monic and relatively prime then $r=\deg A=\deg B$ and

$$A(t) = \prod_{j=1}^{r} (t - e^{2\pi i \alpha_j}), \qquad B(t) = \prod_{j=1}^{r} (t - e^{2\pi i \beta_j}),$$

with the $\alpha's$ and $\beta's$ as above.

1 Integrality

Our goal is to obtain $\gamma \in \Gamma$ such that the truncation of u

$$\sum_{n=0}^{p-1} u_n \lambda^n \bmod p \tag{1.1}$$

for a prime p is related to the number of points over \mathbf{F}_p of some family of varieties X_{λ} . In order to even make sense of this expression we need some integrality assumption on u_n . The simplest such assumption would be

$$u_n \in \mathbf{Z}$$
 for all $n = 0, 1, 2, \dots$ (1.2)

and as we will see below this is in fact necessary if we want the truncation of u modulo p for all sufficiently large primes p.

Let us denote by $\Gamma_{\rm int} \subset \Gamma$ all weight systems satisfying (1.2), which we will call *integral*; they clearly form a sub-cone of Γ . There is an obvious collection of elements in $\Gamma_{\rm int}$, namely, the *multinomials*

$$\gamma = [w_0 + \dots + w_d] - [w_0] - \dots - [w_d], \quad w_0, \dots, w_d \in \mathbf{N}.$$

Let $\Gamma_{\rm mon}$ be the cone spanned by the multinomials. We have then

$$\Gamma_{\rm mon} \subset \Gamma_{\rm int}$$
.

It is interesting and perhaps at first surprising that these two cones are not in fact the same. A classical example

$$\gamma = [30] + [1] - [6] - [10] - [15] \in \Gamma_{int} \setminus \Gamma_{mon}$$

was used by Chebychev in his work on the distribution of prime numbers.

There is a beautiful criterion due to Landau [8] for checking whether $\gamma \in \Gamma_{int}$. Let

$$\mathcal{L}(x) = \mathcal{L}_{\gamma}(x) := -\sum_{\nu > 1} \gamma_{\nu} \{\nu x\}, \qquad x \in \mathbf{R}$$

where $\{x\}$ denotes the fractional part of the real number x. This Landau function is periodic of period 1.

Proposition 1 We have

$$u_n \in \mathbf{Z}$$
 for all $n = 0, 1, 2, \cdots$

if and only if

$$\mathcal{L}(x) \ge 0$$
 for all $x \in \mathbf{R}$.

Proof Fix a prime p and let v_p denote the corresponding valuation. By the well know formula for $v_p(n!)$ we have

$$v_p(u_n) = \sum_{\nu > 1} \gamma_{\nu} \sum_{k > 1} \left[\frac{\nu n}{p^k} \right].$$

Combining $x = [x] + \{x\}$ with 0.2 (i) we find that

$$v_p(u_n) = \sum_{k \ge 1} \mathcal{L}\left(\frac{n}{p^k}\right). \tag{1.3}$$

It follows that if $\mathcal{L}(x) \geq 0$ then $v_p(u_n) \geq 0$ for all p and hence $u_n \in \mathbf{Z}$.

Foor some $\delta > 0$ we have that $\mathcal{L}(x) = 0$ for $x \in [0, \delta)$ (proposition 3); hence, for all primes p such that $p\delta > 1$, $v_p(u_n) = \mathcal{L}(n/p)$ for n < p. Since \mathcal{L} is right continuous it follows that $u_n \in \mathbf{Z}$ implies the non-negativity of \mathcal{L} .

We can be a bit more precise about the way in which the u_n may fail to be integral.

Proposition 2 If γ is not integral then for all p sufficiently large there exists an $0 \le n < p$ such $v_p(u_n) < 0$.

Proof If γ is not integral the by the previous proposition \mathcal{L} is negative at some point. Since \mathcal{L} is locally constant (proposition 3) it follows that \mathcal{L} is negative in some interval of length say $\alpha > 0$. As in the proof of the previous proposition, for all $p\delta > 1$ we have $v_p(u_n) = \mathcal{L}(n/p)$ for $0 \le n < p$. It follows that for all p with $p\delta > 1$ and $p\alpha > 1$ we have $v_p(u_n) < 0$ for some $0 \le n < p$.

We summarize in the next proposition a number of simple properties of \mathcal{L} ; we leave the proofs to the reader (more details will appear in [10]). We call the *support* \mathcal{N} of $\gamma \in \Gamma$ those $\nu \in \mathbf{N}$ for which $\gamma_{\nu} \neq 0$. For $z \in \mathbf{C}$ with |z| < 1 we let $\log(1-z)$ be the standard branch of the logarithm vanishing at z = 0 and define

$$\log(P(z)) = \sum_{\nu > 1} \gamma_{\nu} \log(1 - z^{\nu})$$

Proposition 3 1. The regularity condition 0.2 (i) is equivalent to \mathcal{L} being locally constant.

2. For all x

$$\mathcal{L}(x) = \frac{d}{2} - \lim_{t \to 1^{-}} \frac{1}{\pi} \Im \left[\log P(te^{2\pi ix}) \right].$$

- 3. \mathcal{L} is right continuous with discontinuity points exactly at $x \equiv \alpha_j \mod 1$ or $x \equiv \beta_j \mod 1$ for some $j = 1, \ldots, r$.
- 4. More precisely,

$$\mathcal{L}(x) = \#\{j \mid \alpha_j \le x\} - \#\{j \mid 0 < \beta_j \le x\}.$$

5. \mathcal{L} takes only integer values.

6

$$\int_0^1 \mathcal{L}(x) \, dx = \frac{1}{2} d, \qquad \lim_{x \to 1^-} \mathcal{L}(x) = d, \qquad \lim_{x \to 0^+} \mathcal{L}(x) = 0. \tag{1.4}$$

In particular, for a general non-zero $\gamma = \sum_{\nu \geq 1} \gamma_{\nu}[\nu]$, the conditions 0.2 (i) and $\mathcal{L}(x) \geq 0$ imply 0.2 (ii); i.e., integrality implies positive dimension.

7. If we fix the support \mathcal{N} of $\gamma \in \Gamma$ the finitely many conditions

$$\mathcal{L}\left(\frac{k}{N}\right) \ge 0, \qquad k = 0, 1, \dots, N - 1,\tag{1.5}$$

where N is the lcm of the numbers in \mathcal{N} , is equivalent to $\gamma \in \Gamma_{int}$.

8. Away from the discontinuity points of \mathcal{L} we have

$$\mathcal{L}(-x) = d - \mathcal{L}(x) \tag{1.6}$$

and, in particular, for all x

$$\mathcal{L}(x) \le d, \qquad \text{if } \gamma \in \Gamma_{\text{int}} .$$
 (1.7)

1.1 Examples of $\gamma \in \Gamma_{int} \setminus \Gamma_{mon}$. (i) A computer search reveals some simple examples of $\gamma \in \Gamma_{int} \setminus \Gamma_{mon}$

$$[6] + [1] - 2[2] - [3],$$
 $[9] + [6] - [1] - [3] - [4] - [7],$ etc.

Note that by (1.5) integrality can be checked in finite time; in fact, if we fix the support \mathcal{N} of γ the condition $\gamma \in \Gamma_{\rm int}$ is defined by finitely many inequalities on the γ_{ν} for $\nu \in \mathcal{N}$. We can solve this system completely using, for example, the computer package PORTA www.zib.de/Optimization/Software/Porta.

Here is a list of 22 generators of the cone of integral γ with support $\mathcal{N}=1,2,3,5,6,10,15,30.$

1	2	3	5	6	10	15	30
0	1	-2	-1	-1	0	1	0
0	0	-1	0	-2	0	1	0
1	0	-2	-2	0	0	1	0
-1	0	1	0	-2	1	-2	1
-2	0	1	1	-1	0	-2	1
0	0	0	0	0	0	-2	1
0	0	0	-2	0	1	0	0
0	0	-2	0	1	0	0	0
-2	1	0	0	0	0	0	0
2	-2	-1	-2	0	0	1	0
0	0	0	-1	0	-1	1	0
0	-1	-1	1	0	0	0	0
-2	0	1	2	-1	-2	-1	1
-1	0	0	-1	1	0	0	0
-1	-1	1	0	0	0	0	0
0	0	1	0	-3	0	-1	1
1	-2	-1	0	1	0	0	0
0	0	0	1	0	-2	-1	1
1	0	0	0	-1	-1	-1	1
0	-1	1	-1	-1	1	0	0
-1	1	0	0	-1	-1	1	0
-1	1	0	-1	-1	1	0	0

(The fourth vector from the bottom is Chebychev's example.)

(ii) We may also exhibit an infinite sequence $\gamma(n) \in \Gamma_{\text{int}} \setminus \Gamma_{\text{mon}}$ for $n = 3, 4, \ldots$ of dimension n - 2. Define recursively

$$p_1 := 2$$

 $p_k := p_{k-1} \cdots p_2 p_1 + 1, \qquad k = 1, \cdots, n-1$
 $p_n := p_{n-1} \cdots p_2 p_1 - 1$

and set

$$\gamma(n) := [p_1 \cdots p_n] + [1] - \sum_{j=1}^n [p_1 \cdots \overline{p_j} \cdots p_n],$$

where a bar indicates that that argument should be omitted. For n=3 we have $p_1=2, p_2=3, p_3=5$ so that $\gamma(3)$ is Chebychev's example.

It is easy to show by induction that

$$\sum_{j=1}^{n} \frac{1}{p_j} = 1 + \frac{1}{p_1 \cdots p_n} \tag{1.8}$$

It is clear that $\gamma(n)$ is not in Γ_{mon} ; to check that indeed $\gamma(n) \in \Gamma_{\text{int}}$ we use Landau's criterion. By (1.8) we have

$$\mathcal{L}\left(\frac{k}{p_1\cdots p_n}\right) = k - \sum_{j=1}^n \left[\frac{k}{p_j}\right] \tag{1.9}$$

We need only check that the value of \mathcal{L} in (1.9) is non-negative for all $0 < k < p_1 \cdots p_n$. First note that we cannot have $\left\{\frac{k}{p_j}\right\} = 0$ for all $j = 1, 2, \ldots, n$. Otherwise, k would be divisible by p_j for all $j = 1, 2, \ldots, n$ and therefore divisible by their product $p_1 \cdots p_n$, since the p_j 's are clearly pairwise relatively prime, contradicting that $k < p_1 \cdots p_n$. Say $1 \le l \le n$ is such that $\left\{\frac{k}{p_l}\right\} > 0$. Then by (1.9) and (1.8)

$$\mathcal{L}\left(\frac{k}{p_1\cdots p_n}\right) \ge k - \sum_{j=1}^n \frac{k}{p_j} + \frac{1}{p_l} = \frac{1}{p_l} - \frac{1}{p_1\cdots p_n} \ge 0$$

(iii) We may use the following theorem of Eisenstein (see [7] for a modern treatment and further references). If

$$f(t) = \sum_{n>0} f_n t^n \in \mathbf{Q}[[t]]$$

is the Taylor expansion of an algebraic function then there exist an $N \in \mathbf{N}$ such that $N^n f_n \in \mathbf{Z}$ for all $n = 0, 1, \dots$

When is a hypergeometric function algebraic? It is possible to describe the hypergeometric differential equations for which all of its solutions are algebraic. Schwartz famously did this for the case of rank r=2. More recently Beukers and Heckman [4] did the general case. Scanning their list we find a number of examples of hypergeometric functions of the type (0.3) we are considering (these correspond to the monodromy group being defined over \mathbf{Q}), including, once again, Chebychev's case; in fact, we discover that for Chebychev's example the monodromy group of the corresponding differential equation is the Weyl group of the E_8 lattice!

We will return to the algebraic hypergeometric functions in a later publication [10] but let us mention one of the results. A general converse of Eisenstein's theorem is blatantly false; nevertheless, we have the following.

Theorem 1 Let $\gamma \in \Gamma$ be a hypergeometric weight system. Then the associated hypergeometric function (0.3) is algebraic if and only if γ is integral of dimension d = 1.

2 Cases with dimension equal rank

By (0.4) we have

$$d \leq r$$
.

We will consider the $\gamma \in \Gamma$ were equality holds, which precisely means that $\lambda = 0$ is a point of maximal unipotency for the hypergeometric equation satisfied by u.

If d = r then

$$P(t) = \frac{A(t)}{(t-1)^d}$$
 (2.1)

where

$$A(t) = \prod_{n \ge 2} \Phi_n(t)^{e_n}$$

with Φ_n the *n*-th cyclotomic polynomial and e_n non-negative integers zero for all but finitely many n.

It follows that

$$d = r = \sum_{n>2} e_n \phi(n) \tag{2.2}$$

where ϕ is Euler's phi-function.

On the other hand we have

$$\Phi_n(t) = \prod_{m|n} (t^m - 1)^{\mu(n/m)},$$

where μ is the Möbius function, and therefore any solution to (2.2) gives rise via (2.1) to the Poincaré series of some $\gamma \in \Gamma$ with d = r.

It follows that the $\gamma \in \Gamma$ with d = r form a cone Γ_{uni} generated by

$$\phi(n)[1] - \sum_{m|n} \mu\left(\frac{n}{m}\right)[m], \qquad n = 2, \dots$$

It easy to verify using Landau's criterion (proposition 3, 4.) that $\Gamma_{\rm uni} \subset \Gamma_{\rm int}$.

Since there are only finitely many n's with $\phi(n)$ less than a given bound we see that there are finitely many $\gamma \in \Gamma_{\rm uni}$ of fixed dimension. For small d these are easy to enumerate. For example, n=2,3,4,5,6,8,10,12 are all n>1 with $\phi(n)\leq 4$, the respective values of ϕ being 1,2,2,4,2,4,4. We now describe all cases with d=r<4

For d = 1 we only have one case

$$\gamma = [2] - 2[1],$$

$$P(t) = \frac{t+1}{t-1} = \frac{t^2 - 1}{(t-1)^2}$$

corresponding to

$$u_n = {2n \choose n},$$
 $u(\lambda) = (1 - 4\lambda)^{-\frac{1}{2}}.$

For $\underline{d=2}$ we obtain

where

$$u(\lambda) = {}_{2}F_{1} \begin{pmatrix} a & b \\ 1 & 1 \end{pmatrix} \frac{\lambda}{\lambda_{0}}$$

Note that since $\phi(n)$ is even for all n > 2 any solution of (2.2) for d odd arises from a solution for d-1 by adding an extra $1 = \phi(2)$. In terms of the weight systems, if γ has d = r odd then

$$\gamma = \gamma_0 + [2] - 2[1],$$

where $\gamma_0 \in \Gamma_{\text{uni}}$ has dimension and rank d-1. In particular, we get a description of all $\gamma \in \Gamma_{\text{uni}}$ with d=r=3 from those with d=r=2.

There are 14 cases with $\underline{d} = \underline{4}$ and these are listed in the first column of the table at the end of the paper.

As it happens all cases of $\gamma \in \Gamma_{\rm uni}$ with $d \leq 4$ are also in $\Gamma_{\rm mon}$ (this is not true for general d; for example, [30] + [5] + [3] + [2] - [15] - 10] - [6] - 9[1] is integral with d = r = 8 but is not monomial). We can associate to them a one-parameter family of CY hypersurfaces in a weighted projective space of dimension d with $u(\lambda)$ as one of its periods. More precisely, for d = 2, 3, 4 we obtain families of elliptic curves, K3 surfaces, and CY threefolds respectively. The 14 families of CY threefolds, except for the last in the table, are discussed in a paper of Batyrev and Straten [2].

3 The case of threefolds

Let X_{λ} be one of the families of threefolds associated via toric geometry to a $\gamma \in \Gamma_{\text{uni}}$ of dimension 4. Corresponding to the Picard-Fuchs equation for u there is a factor $R_0(t)$ (see [6] for more details) of the numerator of the zeta function of X_{λ} . For $\lambda \neq \lambda_0$ this factor is of degree 4 but at the special point $\lambda = \lambda_0$, where X_{λ} becomes singular, we have

$$R_0(t) = (1 - \left(\frac{D}{p}\right)pt)(1 - a_pt + p^3t^2).$$

One can verify, the same way that Schoen [11] did it for the standard quintic [5] - 5[1] using powerful results of Faltings and Serre, that a_p is the p-th coefficient of a certain modular form of weight 4 for a congruence subgroup of $SL_2(\mathbf{Z})$. (This feature of rigid CY threefolds has been discussed by several people, including N. Yui and H. Verrill.)

We identified these modular forms by computing a_p for several p's using the p-adic formulas of [5], [6] and then comparing with the tables of W. Stein www.math.harvard edu/~was (Actually, some of the forms had bigger level than those tabulated there and we had to generate the modular forms with an a-priori guess for the level.) The resulting data is tabulated at the end of the paper (N is the level of the modular form, the last columns list a_p for $p=2,3,\cdots,11$).

In the process something interesting emerged: the congruence between the truncation (1.1) of the period u at $\lambda = \lambda_0$ actually appears to hold mod p^3 rather than just mod p. This phenomenon of super-congruence was first observed by Beukers [3] in connection with the numbers Apéry used in his proof of the irrationality of $\zeta(3)$. There is by now a quite extensive literature on questions of this kind (see for example [1]).

Precisely, we find (numerically) that for all primes p not diving λ_0^{-1}

$$\sum_{n=0}^{p-1} u_n \lambda_0^{-n} \equiv a_p \bmod p^3.$$

The super-congruences also appear to hold for smaller dimensions. For example, for the case $\gamma=2[2]-4[1]$ with d=r=2 we find (again numerically) that for odd p

$$\sum_{n=0}^{p-1} \binom{2n}{n}^2 16^{-n} \equiv \left(\frac{-4}{p}\right) \bmod p^2.$$

These have been now proved by E. Mortenson [9].

γ	λ_0^{-1}	D	N	2	3	5	7	11
4[2] - 8[1]	28	2^{4}	$8 = 2^3$	0	-4	-2	24	-44
[4] + [3] - [2] - 5[1]	$2^6 \cdot 3^3$	$2 \cdot 3$	$9 = 3^2$	0	0	0	20	0
[4] + [2] - 6[1]	2^{10}	2^3	$16 = 2^4$	0	4	-2	-24	44
[5] - 5[1]	5^5	5	$25 = 5^2$	1	7	0	6	-43
2[3] - 6[1]	3^{6}	3^{2}	$27 = 3^3$	-3	0	-15	-25	15
2[4] - 2[2] - 4[1]	2^{12}	2^{2}	$32 = 2^5$	0	-8	-10	-16	40
[3] + 2[2] - 7[1]	$2^4 \cdot 3^3$	$2^2 \cdot 3$	$36 = 2^2 \cdot 3^2$	0	0	18	8	-36
[6] + [2] - [3] - 5[1]	$2^8 \cdot 3^3$	2^2	$72 = 2^3 \cdot 3^2$	0	0	-14	-24	28
[6] - [2] - 4[1]	$2^4 \cdot 3^6$	3	$108 = 2^2 \cdot 3^3$	0	0	-9	-1	-63
[8] - [4] - 4[1]	2^{16}	2	$128 = 2^7$	0	-2	6	-20	-14
[6] + [4] - [3] - 2[2] - 3[1]	$2^{10} \cdot 3^3$	2	$144 = 2^4 \cdot 3^2$	0	0	16	12	-64
[10] - [5] - [2] - 3[1]	$2^8 \cdot 5^5$	1	$200 = 2^3 \cdot 5^2$	0	1	0	-6	-19
2[6] - 2[3] - 2[2] - 2[1]	$2^8 \cdot 3^6$	1	$216 = 2^3 \cdot 3^3$	0	0	1	-9	-17
[12] + [2] - [6] - [4] - 4[1]	$2^{12} \cdot 3^6$	1	$864 = 2^5 \cdot 3^3$	0	0	-19	-13	-65

References

- S. Ahlgren and K. Ono Addition and counting: the arithmetic of partitions, Notices Amer. Math. Soc. 48 (2001), no. 9, 978–984.
- [2] V. Batyrev and D. van Straten Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toric varieties Comm. Math. Phys. 168 (1995), 493-533.
- [3] F. Beukers Another congruence for the Apéry numbers J. Number Theory 25 (1987), 201– 210.
- [4] F. Beukers and G. Heckman Monodromy for the hypergeometric function ${}_{n}F_{n-1}$, Invent. Math. 95 (1989), 325–354.
- [5] P. Candelas, X. de la Ossa, and F. Rodriguez Villegas Calabi Yau manifolds over finite fields I http://xxx.lanl.gov/abs/hep-th/0012233.
- [6] P. Candelas, X. de la Ossa, and F. Rodriguez Villegas Calabi Yau manifolds over finite fields II, in preparation.
- [7] B. Dwork and A. van der Poorten The Eisenstein constant, Duke Math. J. 65 (1992), no. 1, 23–43; Duke Math. J. 76 (1994), no. 2, 669–672. 12H25 (11R09)
- [8] E. Landau Sur les conditions de divisibilité d'un produit de factorielles par un autre. Collected works, I, p. 116, Thales-Verlag, Essen, 1985.
- [9] E. Mortenson A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function, to appear in J. of Number Theory.
- $\left[10\right]$ F. Rodriguez Villegas $Hypergeometric\ functions\ and\ lattices,$ in preparation.
- [11] C. Schoen On the geometry of a special determinantal hypersurface associated to the Mumford- Horrocks vector bundle J. Reine Angew. Math. 364 (1986), 85–111.