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Hypergeometric Weight Systems

By a hypergeometric weight system we will mean a formal linear combination

γ =
∑

ν≥1

γν [ν], (0.1)

where γν ∈ Z are zero for all but finitely many ν, satisfying the following two
conditions

(i)
∑

ν≥1

νγν = 0

(ii) d = d(γ) := −
∑

ν≥1

γν > 0
(0.2)

We denote by Γ the set of all such γ. Note that Γ is a cone, i.e. if γ, γ′ ∈ Γ then
γ + γ′ ∈ Γ. We call d the dimension of the weight system γ.

To γ ∈ Γ we associate the hypergeometric function

u(λ) :=
∑

n≥0

unλ
n (0.3)

where

un =
∏

ν≥1

(νn)!γν .

It is easy to check that for some minimal r we have

u(λ) = rFr−1

(

α1 · · · αr

β1 · · · βr

∣

∣

∣

∣

λ

λ 0

)

,

where

λ−1
0 :=

∏

ν≥1

ννγν ,

I would like to thank the NSF, TARP and the Alfred P. Sloan Foundation for financial
support.

c©0000 American Mathematical Society

1



2 Fernando Rodriguez Villegas

and 0 ≤ α1 ≤ α2 ≤ · · · ≤ αr < 1 and 0 ≤ β1 ≤ β2 ≤ · · · ≤ βr < 1 are two sets of r
rational numbers. We call λ0 = λ0(γ) and r = r(γ), respectively, the special point
and the rank of γ.

The condition 0.2 (i) precisely guarantees that the linear differential equation
(of order r) satisfied by u has only regular singularities.

By Stirling

un ∼
√
D

(2πn)d/2
λ−n
0

where

D :=
∏

ν≥1

νγν .

It will be convenient to introduce

P (t) :=
∏

ν≥1

(1− tν)γν

the Poincaré series of γ.
Note that

d = order of pole of P at t = 1 (0.4)

and

D =
∏

ν≥1

(

1− tν

1− t

)γν
∣

∣

∣

∣

t=1

= (−1)d
[

(t− 1)dP (t)
]∣

∣

t=1
,

is (−1)d times its leading coefficient at t = 1. If we write

P (t) = (−1)d
A(t)

B(t)

in lowest terms, with A,B ∈ Z[t] monic and relatively prime then r = degA =
degB and

A(t) =
r
∏

j=1

(t− e2πiαj ), B(t) =
r
∏

j=1

(t− e2πiβj ),

with the α′s and β′s as above.

1 Integrality

Our goal is to obtain γ ∈ Γ such that the truncation of u

p−1
∑

n=0

unλ
n mod p (1.1)

for a prime p is related to the number of points over Fp of some family of vari-
eties Xλ. In order to even make sense of this expression we need some integrality
assumption on un. The simplest such assumption would be

un ∈ Z for all n = 0, 1, 2, . . . (1.2)

and as we will see below this is in fact necessary if we want the truncation of u
modulo p for all sufficiently large primes p.
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Let us denote by Γint ⊂ Γ all weight systems satisfying (1.2), which we will
call integral; they clearly form a sub-cone of Γ. There is an obvious collection of
elements in Γint, namely, the multinomials

γ = [w0 + · · ·+ wd]− [w0]− · · · − [wd], w0, · · · , wd ∈ N .

Let Γmon be the cone spanned by the multinomials. We have then

Γmon ⊂ Γint .

It is interesting and perhaps at first surprising that these two cones are not in fact
the same. A classical example

γ = [30] + [1]− [6]− [10]− [15] ∈ Γint \ Γmon

was used by Chebychev in his work on the distribution of prime numbers.
There is a beautiful criterion due to Landau [8] for checking whether γ ∈ Γint.

Let

L(x) = Lγ(x) := −
∑

ν≥1

γν{νx}, x ∈ R

where {x} denotes the fractional part of the real number x. This Landau function
is periodic of period 1.

Proposition 1 We have

un ∈ Z for all n = 0, 1, 2, · · ·
if and only if

L(x) ≥ 0 for all x ∈ R .

Proof Fix a prime p and let vp denote the corresponding valuation. By the
well know formula for vp(n!) we have

vp(un) =
∑

ν≥1

γν
∑

k≥1

[

νn

pk

]

.

Combining x = [x] + {x} with 0.2 (i) we find that

vp(un) =
∑

k≥1

L
(

n

pk

)

. (1.3)

It follows that if L(x) ≥ 0 then vp(un) ≥ 0 for all p and hence un ∈ Z.
Foor some δ > 0 we have that L(x) = 0 for x ∈ [0, δ) (proposition 3) ; hence,

for all primes p such that pδ > 1, vp(un) = L(n/p) for n < p. Since L is right
continuous it follows that un ∈ Z implies the non-negativity of L.

We can be a bit more precise about the way in which the un may fail to be
integral.

Proposition 2 If γ is not integral then for all p sufficiently large there exists
an 0 ≤ n < p such vp(un) < 0.

Proof If γ is not integral the by the previous proposition L is negative at some
point. Since L is locally constant (proposition 3) it follows that L is negative in
some interval of length say α > 0. As in the proof of the previous proposition, for
all pδ > 1 we have vp(un) = L(n/p) for 0 ≤ n < p. It follows that for all p with
pδ > 1 and pα > 1 we have vp(un) < 0 for some 0 ≤ n < p.
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We summarize in the next proposition a number of simple properties of L; we
leave the proofs to the reader (more details will appear in [10]). We call the support
N of γ ∈ Γ those ν ∈ N for which γν 6= 0. For z ∈ C with |z| < 1 we let log(1− z)
be the standard branch of the logarithm vanishing at z = 0 and define

log(P (z)) =
∑

ν≥1

γν log(1− zν)

Proposition 3 1. The regularity condition 0.2 (i) is equivalent to L being
locally constant.

2. For all x

L(x) = d

2
− lim

t→1−

1
πℑ

[

logP (te2πix)
]

.

3. L is right continuous with discontinuity points exactly at x ≡ αj mod 1 or
x ≡ βj mod 1 for some j = 1, . . . , r.

4. More precisely,

L(x) = #{j | αj ≤ x} −#{j | 0 < βj ≤ x}.

5. L takes only integer values.
6.

∫ 1

0

L(x) dx = 1
2d, lim

x→1−
L(x) = d, lim

x→0+
L(x) = 0. (1.4)

In particular, for a general non-zero γ =
∑

ν≥1 γν [ν], the conditions 0.2 (i)

and L(x) ≥ 0 imply 0.2 (ii); i.e., integrality implies positive dimension.
7. If we fix the support N of γ ∈ Γ the finitely many conditions

L
(

k

N

)

≥ 0, k = 0, 1, . . . , N − 1, (1.5)

where N is the lcm of the numbers in N , is equivalent to γ ∈ Γint.
8. Away from the discontinuity points of L we have

L(−x) = d− L(x) (1.6)

and, in particular, for all x

L(x) ≤ d, if γ ∈ Γint . (1.7)

1.1 Examples of γ ∈ Γint \Γmon. (i) A computer search reveals some simple
examples of γ ∈ Γint \ Γmon

[6] + [1]− 2[2]− [3], [9] + [6]− [1]− [3]− [4]− [7], etc.

Note that by (1.5) integrality can be checked in finite time; in fact, if we fix the
support N of γ the condition γ ∈ Γint is defined by finitely many inequalities on
the γν for ν ∈ N . We can solve this system completely using, for example, the
computer package PORTA www.zib.de/Optimization/Software/Porta.
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Here is a list of 22 generators of the cone of integral γ with support N =
1, 2, 3, 5, 6, 10, 15, 30.

1 2 3 5 6 10 15 30

0 1 −2 −1 −1 0 1 0
0 0 −1 0 −2 0 1 0
1 0 −2 −2 0 0 1 0

−1 0 1 0 −2 1 −2 1
−2 0 1 1 −1 0 −2 1
0 0 0 0 0 0 −2 1
0 0 0 −2 0 1 0 0
0 0 −2 0 1 0 0 0

−2 1 0 0 0 0 0 0
2 −2 −1 −2 0 0 1 0
0 0 0 −1 0 −1 1 0
0 −1 −1 1 0 0 0 0

−2 0 1 2 −1 −2 −1 1
−1 0 0 −1 1 0 0 0
−1 −1 1 0 0 0 0 0
0 0 1 0 −3 0 −1 1
1 −2 −1 0 1 0 0 0
0 0 0 1 0 −2 −1 1
1 0 0 0 −1 −1 −1 1
0 −1 1 −1 −1 1 0 0

−1 1 0 0 −1 −1 1 0
−1 1 0 −1 −1 1 0 0

(The fourth vector from the bottom is Chebychev’s example.)

(ii) We may also exhibit an infinite sequence γ(n) ∈ Γint \ Γmon for n = 3, 4, . . . of
dimension n− 2. Define recursively

p1 :=2

pk :=pk−1 · · · p2p1 + 1, k = 1, · · · , n− 1

pn :=pn−1 · · · p2p1 − 1

and set

γ(n) := [p1 · · · pn] + [1]−
n
∑

j=1

[p1 · · · pj · · · pn],

where a bar indicates that that argument should be omitted. For n = 3 we have
p1 = 2, p2 = 3, p3 = 5 so that γ(3) is Chebychev’s example.

It is easy to show by induction that

n
∑

j=1

1

pj
= 1 +

1

p1 · · · pn
(1.8)
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It is clear that γ(n) is not in Γmon; to check that indeed γ(n) ∈ Γint we use Landau’s
criterion. By (1.8) we have

L
(

k

p1 · · · pn

)

= k −
n
∑

j=1

[

k

pj

]

(1.9)

We need only check that the value of L in (1.9) is non-negative for all 0 < k <
p1 · · · pn. First note that we cannot have { k

pj
} = 0 for all j = 1, 2, . . . , n. Otherwise,

k would be divisible by pj for all j = 1, 2, . . . , n and therefore divisible by their
product p1 · · · pn, since the pj ’s are clearly pairwise relatively prime, contradicting

that k < p1 · · · pn. Say 1 ≤ l ≤ n is such that { k
pl
} > 0. Then by (1.9) and (1.8)

L
(

k

p1 · · · pn

)

≥ k −
n
∑

j=1

k

pj
+

1

pl
=

1

pl
− 1

p1 · · · pn
≥ 0

(iii) We may use the following theorem of Eisenstein (see [7] for a modern
treatment and further references). If

f(t) =
∑

n≥0

fnt
n ∈ Q[[t]]

is the Taylor expansion of an algebraic function then there exist an N ∈ N such
that Nnfn ∈ Z for all n = 0, 1, . . .

When is a hypergeometric function algebraic? It is possible to describe the
hypergeometric differential equations for which all of its solutions are algebraic.
Schwartz famously did this for the case of rank r = 2. More recently Beukers and
Heckman [4] did the general case. Scanning their list we find a number of examples
of hypergeometric functions of the type (0.3) we are considering (these correspond
to the monodromy group being defined over Q), including, once again, Chebychev’s
case; in fact, we discover that for Chebychev’s example the monodromy group of
the corresponding differential equation is the Weyl group of the E8 lattice!

We will return to the algebraic hypergeometric functions in a later publication
[10] but let us mention one of the results. A general converse of Eisenstein’s theorem
is blatantly false; nevertheless, we have the following.

Theorem 1 Let γ ∈ Γ be a hypergeometric weight system. Then the associated
hypergeometric function (0.3) is algebraic if and only if γ is integral of dimension
d = 1.

2 Cases with dimension equal rank

By (0.4) we have

d ≤ r.

We will consider the γ ∈ Γ were equality holds, which precisely means that λ = 0
is a point of maximal unipotency for the hypergeometric equation satisfied by u.

If d = r then

P (t) =
A(t)

(t− 1)d
(2.1)

where

A(t) =
∏

n≥2

Φn(t)
en
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with Φn the n-th cyclotomic polynomial and en non-negative integers zero for all
but finitely many n.

It follows that

d = r =
∑

n≥2

enφ(n) (2.2)

where φ is Euler’s phi-function.
On the other hand we have

Φn(t) =
∏

m|n

(tm − 1)µ(n/m),

where µ is the Möbius function, and therefore any solution to (2.2) gives rise via
(2.1) to the Poincaré series of some γ ∈ Γ with d = r.

It follows that the γ ∈ Γ with d = r form a cone Γuni generated by

φ(n)[1]−
∑

m|n

µ
( n

m

)

[m], n = 2, · · ·

It easy to verify using Landau’s criterion (proposition 3, 4.) that Γuni ⊂ Γint.
Since there are only finitely many n’s with φ(n) less than a given bound we see

that there are finitely many γ ∈ Γuni of fixed dimension. For small d these are easy
to enumerate. For example, n = 2, 3, 4, 5, 6, 8, 10, 12 are all n > 1 with φ(n) ≤ 4,
the respective values of φ being 1, 2, 2, 4, 2, 4, 4, 4. We now describe all cases with
d = r ≤ 4

For d = 1 we only have one case

γ = [2]− 2[1], P (t) =
t+ 1

t− 1
=

t2 − 1

(t− 1)2

corresponding to

un =

(

2n

n

)

, u(λ) = (1− 4λ)−
1
2 .

For d = 2 we obtain

γ a b λ−1
0

2[2]− 4[1] 1/2 1/2 16

[3]− 3[1] 1/3 2/3 27

[4]− [2]− 2[1] 1/4 3/4 4

[6]− [3]− [2]− [1] 1/6 5/6 432

where

u(λ) = 2F1

(

a b
1 1

∣

∣

∣

∣

λ

λ 0

)

Note that since φ(n) is even for all n > 2 any solution of (2.2) for d odd arises
from a solution for d − 1 by adding an extra 1 = φ(2). In terms of the weight
systems, if γ has d = r odd then

γ = γ0 + [2]− 2[1],

where γ0 ∈ Γuni has dimension and rank d− 1. In particular, we get a description
of all γ ∈ Γuni with d = r = 3 from those with d = r = 2.

There are 14 cases with d = 4 and these are listed in the first column of the
table at the end of the paper.
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As it happens all cases of γ ∈ Γuni with d ≤ 4 are also in Γmon (this is not true
for general d; for example, [30]+ [5]+ [3]+ [2]− [15]−10]− [6]−9[1] is integral with
d = r = 8 but is not monomial). We can associate to them a one-parameter family
of CY hypersurfaces in a weighted projective space of dimension d with u(λ) as one
of its periods. More precisely, for d = 2, 3, 4 we obtain families of elliptic curves, K3
surfaces, and CY threefolds respectively. The 14 families of CY threefolds, except
for the last in the table, are discussed in a paper of Batyrev and Straten [2].

3 The case of threefolds

Let Xλ be one of the families of threefolds associated via toric geometry to a
γ ∈ Γuni of dimension 4. Corresponding to the Picard-Fuchs equation for u there
is a factor R0(t) (see [6] for more details) of the numerator of the zeta function of
Xλ. For λ 6= λ0 this factor is of degree 4 but at the special point λ = λ0, where Xλ

becomes singular, we have

R0(t) = (1−
(

D

p

)

pt)(1− apt+ p3t2).

One can verify, the same way that Schoen [11] did it for the standard quintic
[5]− 5[1] using powerful results of Faltings and Serre, that ap is the p-th coefficient
of a certain modular form of weight 4 for a congruence subgroup of SL2(Z). (This
feature of rigid CY threefolds has been discussed by several people, including N.
Yui and H. Verrill.)

We identified these modular forms by computing ap for several p’s using the
p-adic formulas of [5], [6] and then comparing with the tables of W. Stein
www.math.harvard edu/~was (Actually, some of the forms had bigger level than
those tabulated there and we had to generate the modular forms with an a-priori
guess for the level.) The resulting data is tabulated at the end of the paper (N is
the level of the modular form, the last columns list ap for p = 2, 3, · · · , 11).

In the process something interesting emerged: the congruence between the trun-
cation (1.1) of the period u at λ = λ0 actually appears to hold mod p3 rather than
just mod p. This phenomenon of super-congruence was first observed by Beukers
[3] in connection with the numbers Apéry used in his proof of the irrationality of
ζ(3). There is by now a quite extensive literature on questions of this kind (see for
example [1]).

Precisely, we find (numerically) that for all primes p not diving λ−1
0

p−1
∑

n=0

unλ
−n
0 ≡ ap mod p3.

The super-congruences also appear to hold for smaller dimensions. For example,
for the case γ = 2[2]− 4[1] with d = r = 2 we find (again numerically) that for odd
p

p−1
∑

n=0

(

2n

n

)2

16−n ≡
(−4

p

)

mod p2.

These have been now proved by E. Mortenson [9].
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γ λ−1
0 D N 2 3 5 7 11

4[2]− 8[1] 28 24 8 = 23 0 −4 −2 24 −44

[4] + [3]− [2]− 5[1] 26 · 33 2 · 3 9 = 32 0 0 0 20 0

[4] + [2]− 6[1] 210 23 16 = 24 0 4 −2 −24 44

[5]− 5[1] 55 5 25 = 52 1 7 0 6 −43

2[3]− 6[1] 36 32 27 = 33 −3 0 −15 −25 15

2[4]− 2[2]− 4[1] 212 22 32 = 25 0 −8 −10 −16 40

[3] + 2[2]− 7[1] 24 · 33 22 · 3 36 = 22 · 32 0 0 18 8 −36

[6] + [2]− [3]− 5[1] 28 · 33 22 72 = 23 · 32 0 0 −14 −24 28

[6]− [2]− 4[1] 24 · 36 3 108 = 22 · 33 0 0 −9 −1 −63

[8]− [4]− 4[1] 216 2 128 = 27 0 −2 6 −20 −14

[6] + [4]− [3]− 2[2]− 3[1] 210 · 33 2 144 = 24 · 32 0 0 16 12 −64

[10]− [5]− [2]− 3[1] 28 · 55 1 200 = 23 · 52 0 1 0 −6 −19

2[6]− 2[3]− 2[2]− 2[1] 28 · 36 1 216 = 23 · 33 0 0 1 −9 −17

[12] + [2]− [6]− [4]− 4[1] 212 · 36 1 864 = 25 · 33 0 0 −19 −13 −65
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