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Abstract. Let P be a simple lattice polytope. We define an action of the
Hecke operators on E(P ), the Ehrhart polynomial of P , and describe their
effect on the coefficients of E(P ). We also describe how the Brion–Vergne
formula for E(P ) transforms under the Hecke operators for nonsingular lattice
polytopes P .
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1. Introduction

1.1. Let L be a rank n lattice, embedded in a real n-dimensional vector space V .
Let P(L) be the set of n-dimensional convex polytopes in V with vertices in L.
For any P ∈ P(L), and for any nonnegative integer t, let tP be P scaled by the
factor t. Then by a result of Ehrhart [11], the function t �→ #(tP ∩ L) is a degree
n polynomial with rational coefficients, called the Ehrhart polynomial of P . Hence
one can think of the Ehrhart polynomial as giving a map E from P(L) to the
polynomial ring Q[t].

Write E(P ) =
∑n

l=0 clt
l. Formulas for the coefficients cl, in various settings

and with varying degrees of generality, have been given by several authors [5–7,
10, 14, 16, 20, 21]. Some coefficients are easy to understand, for example

c0 = 1, cn = VolP, and cn−1 = Vol(∂P )/2. (1)

Here Vol P is taken with respect to the measure that gives a fundamental domain
of L volume 1; if a polytope has dimension less than n, we compute its volume with
respect to the lattice obtained by intersecting its affine hull with L. For a general
lattice polytope, expressions for the Ehrhart coefficients involve not only volumes
but also subtle arithmetic information, namely higher-dimensional Dedekind sums
as studied by Carlitz and Zagier [8, 23].
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1.2. The Ehrhart polynomial depends not just on the combinatorial type of P ,
but rather on the pair (P, L). Hence it is natural to consider how E(P ) changes
as L is varied. The theory of automorphic forms provides a powerful machine to
accomplish this, namely the technique of Hecke operators.

Thus let p be a prime, and let k ≤ n be a positive integer. Given a lattice poly-
tope P with Ehrhart polynomial E(P ), we define a new polynomial T (p, k)E(P )
as follows. Let p−1L be the canonical superlattice of L of coindex pn. We have
p−1L/L � Fn

p , and any lattice M satisfying p−1L � M � L determines a subspace
M ⊂ Fn

p . Let Lk be the set of such lattices with dim M = k. Then we define

T (p, k)E(P ) =
∑

M∈Lk

E(PM ), (2)

where PM ∈ P(M) denotes the lattice polytope with vertices in M canonically
determined by P .

1.3. In this paper we consider the relationship between T (p, k)E(P ) and E(P ).
To state our results, we require more notation. For any nonnegative integer l ≤ n,
fix an l-dimensional subspace U of Fn

p , and define

νn,k,l(p) =
∑

W⊂F
n
p

dim W=k

pdim W∩U . (3)

Note that this value is independent of the choice of U . Finally, for any polynomial
f ∈ Q[t] let cl(f) be the coefficient of tl in f . Then our first result can be stated
as follows:

Theorem 1.4. For each triple (n, k, l), there is a polynomial with positive coeffi-
cients

Φn,k,l(t) ∈ Z[t], (4)
independent of p, such that Φn,k,l(p) = νn,k,l(p). Moreover,

cl(T (p, k)E(P )) = νn,k,l(p)cl(E(P )), (5)

independently of P . The ratios ν satisfy

νn,k,l(p)/νn,n−k,n−l(p) = pk+l−n.

The sum (3) can be viewed as a sum of p-powers over a certain geometrically-
defined stratification of the finite Grassmannian Gr(k, n)(Fp); however, the exis-
tence of Φ, as well as the statement that it has positive coefficients, does not follow
immediately from (3) since the number of terms in the sum grows with p and since
the strata are only locally closed.

As an example of Theorem 1.4, if l = 0, then c0(E(P )) = 1 for any P . Hence
the ratio on the left of (5) is the number of terms in (2). It is well known that
this is the cardinality of Gr(k, n)(Fp) (cf. Lemma 2.5), which equals νn,k,0(p). For
further examples, Table 1 shows the Hecke eigenvalues that arise for the Ehrhart
coefficients of 4-dimensional polytopes.
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Table 1. Eigenvalues for n = 4

T (p, 1) T (p, 2) T (p, 3)
c4 p4 + p3 + p2 + p p6 + p5 + 2p4 + p3 + p2 p6 + p5 + p4 + p3

c3 2p3 + p2 + p p5 + 2p4 + 2p3 + p2 p5 + p4 + 2p3

c2 p3 + 2p2 + p 2p4 + 2p3 + 2p2 p4 + 2p3 + p2

c1 p3 + p2 + 2p p4 + 2p3 + 2p2 + p 2p3 + p2 + p
c0 p3 + p2 + p + 1 p4 + p3 + 2p2 + p + 1 p3 + p2 + p + 1

1.5. A geometric interpretation of the eigenvalue (3) is the following. Consider
the map

Voll : P(L) → Q

taking P to the sum of the volumes of all faces of dimension l. Then we can
define an action of the Hecke operators on Voll as in (2), and one can show that
T (p, k) Voll = νn,k,l(p) Voll (Proposition 2.8). Hence Theorem 1.4 says that the
lth coefficient of the Ehrhart polynomial transforms under the Hecke operators
exactly as the volumes of the l-dimensional faces do. For another interpretation,
in terms of counting the number of Fp-points on certain varieties, see Remark 3.4.

1.6. Recall that an n-dimensional lattice polytope is called simple if every vertex
meets exactly n edges, and is called nonsingular if for any vertex v, the primitive
lattice vectors parallel to the edges emanating from v form a Z-basis of L. Our
next result concerns how the Hecke operators interact with certain formulas for
the coefficients of the Ehrhart polynomial in the special case that P is simple.

Let F (n − 1) be the set of facets of P , and let h = (hF )F∈F(n−1) be a
real multivariable indexed by the facets of P . Let P (h) be the convex region
obtained by parallel translation of the facets of P by the parameter h, normalized
by P (0) = P (§4.1). For small h the region P (h) is bounded, and the volume
VolP (h) is a polynomial function of h.

Let Σ be the normal fan to P (§2.2). Then the polytope P determines a
differential operator Td(Σ, ∂/∂h), called the Todd operator (§4.7). In the special
case that P is nonsingular, this operator is defined as follows. Let Td(x) be the
power series expansion of x/(1 − e−x), i.e.

Td(x) =
∞∑

j=0

Bj

j!
xj ,

where Bj are the Bernoulli numbers. For each hF let Td(∂/∂hF ) be the differential
operator obtained by formally replacing x with ∂/∂hF in Td(x). Then Td(Σ, ∂/∂h)
is defined to be the product

Td(Σ, ∂/∂h) =
∏

F∈F(n−1)

Td(∂/∂hF ). (6)
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Note that product may be taken in any order, since the derivatives mutually
commute. This is an infinite-degree differential operator, and we denote by

Tdl(Σ, ∂/∂h)

the homogeneous terms of degree l. By Khovanskĭı–Pukhlikov [21] one has

cn−l(E(P )) = Tdl(Σ, ∂/∂h) VolP (h)
∣
∣
h=0

.

If the polytope P is simple and not nonsingular, then one must enlarge (6) with
additional terms involving higher-dimensional Dedekind sums; the corresponding
formula is due to Brion–Vergne [5].

1.7. Let f be a face of P of codimension ≤ l, and let π = (π(F ))F⊃f be an
ordered partition of l into positive parts indexed by the facets containing f . The
pair (f, π) determines a differential operator

∂π
f =

∏

F⊃f

(∂/∂hF )π(F ),

and we can collect common terms in (6) to write

Tdl(Σ, ∂/∂h) =
∑

(f,π)

A(f, π)∂π
f . (7)

The coefficient A(f, π) is rational, and for simple P it is essentially a rank l
Dedekind sum. Our next result shows that if P is nonsingular, then these in-
dividual terms transform under the Hecke operators exactly as the coefficients of
E(P ) do:

Theorem 1.8. Let P ∈ P(L) be a nonsingular lattice polytope. For any superlattice
M ⊃ L, let fM be the face f , thought of as a face of PM . Then for each degree l
term A(f, π)∂π

f ∈ Tdl(Σ, ∂/∂h) in the Brion–Vergne formula, we have
∑

M∈Lk

A(fM , π)∂π
fM

Vol PM (h)
∣
∣
h=0

= νn,k,n−l(p)A(f, π)∂π
f Vol P (h)

∣
∣
h=0

. (8)

Note that the Hecke images PM in (8) are in general singular, even if P is
nonsingular. Also, the proof of Theorem 1.8 is independent of that of Theorem 1.4,
and hence provides another proof of Theorem 1.4 for nonsingular lattice polytopes.

1.9. We comment briefly on the proofs of Theorems 1.4 and 1.8. The proof of
Theorem 1.4 is a counting argument. The new lattice points appearing in P in
the sum (2) all lie in the superlattice p−1L, and to compute T (p, k)E(P ) one
keeps track of which lattice points appear in a given Hecke image. This gives an
expression for T (p, k)E(P ) in terms of E(P )(t), E(P )(pt), and the cardinalities
of some finite Grassmannians. An additional argument shows that this expression
implies (5).

The proof of Theorem 1.8 is more complicated. At the heart of (8) are certain
“distribution relations” of Dedekind sums, essentially coming from a distribution
relation satisfied by the Hurwitz zeta function (§6.2). In the proof of Theorem 1.8,
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these relations appear in identities involving Dedekind sums and the cardinalities
of strata in certain stratifications of finite Grassmannians.1

Rather than proving these identities directly, we show that they occur in the
computation of the constant term of T (p, j)E(P ′) for lower-dimensional polytopes
P ′ and for j ≤ k. Since these constant terms are always 1, by appropriately
choosing P ′ we show that our identities hold. Then we use induction to complete
the argument.

1.10. Here is a fanciful interpretation of Theorem 1.4. The Ehrhart polynomial
is clearly invariant under the action of GL(L), the linear automorphisms of V
preserving L. One can think of P(L) as being like the upper halfplane H, and the
equivalence class of P ∈ P(L) as being a point on the modular curve SL2(Z)\H.
Then the lth coefficient cl, thought of as a function GL(L)\P(L) → Q, plays the
role of a weight l modular form, and Theorem 1.4 says that cl is a “weight l Hecke
eigenform of level 1.” Indeed, the analogy between coefficients of E and modular
forms was our original motivation to consider this problem.

One can say more about this analogy. Suppose one has an action of the
Hecke operators in a finite-dimensional complex vector space W . For instance, W
could be the space of holomorphic modular forms for a congruence subgroup of
SL2(Z), or the cohomology of fixed degree of an arithmetic subgroup of GLn(Z),
or even more general spaces of automorphic forms. Then under certain condi-
tions (“algebraic type at infinity”), the Langlands philosophy predicts that Hecke
eigenclasses β ∈ W should correspond to families of �-adic representations of the
absolute Galois group GQ = Gal(Q̄/Q). The connection is revealed through the
Hecke eigenvalues.

Suppose that for a prime p the Hecke operator T (p, k) acts on β with eigen-
value a(p, k). In saying this we assume that p is not a “bad prime” for β; at this
heuristic level we cannot make this more precise, except to say that in the example
of modular forms these are the primes dividing the level. Hence for our analogy
there are no bad primes since the level is 1. Using these eigenvalues we can form
the Hecke polynomial

Hp(β) =
n∑

k=0

(−1)ka(p, k)pk(k−1)/2Xk ∈ C[X].

Now let ρ : GQ → GLn(Q�) be a continuous semisimple Galois representation
unramified away from p. We also assume ρ is unramified away from “bad primes”
of β. Choose an isomorphism ι : Q� → C. Then one says β is attached to ρ if for
all good primes p we have

Hp(β) = det(I − ρ(Frobp)X),

1We remark that the action of the Hecke operators on Dedekind sums has been studied in the
literature, starting with Dedekind himself [9], and more recently by Knopp [17], Nagasaka [19],
Zheng [24], and Beck [3].
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where Frobp ⊂ GQ is the Frobenius conjugacy class, and where we used ι to
compare the two sides.

Now let βl be the eigenclass corresponding to the lth Ehrhart coefficient cl,
with the Hecke eigenvalues νn,k,l(p) from Theorem 1.4. We claim that indeed βl

is attached to a Galois representation. To see this, let ε be the �-adic cyclotomic
character, which satisfies ε(Frobp) = p for all p 
= �. Let ω be the Galois repre-
sentation ε ⊕ ε2 ⊕ · · · ⊕ εn−1.2 Then we claim βl is attached to the representation
εl ⊕ ω. Checking this amounts to verifying the identity

n∑

k=0

(−1)kνn,k,l(p)pk(k−1)/2Xk = (1 − plX)
n−1∏

j=1

(1 − pjX),

a pleasant exercise. For l = 0, when the eigenvalues are the cardinalities of finite
Grassmannians, this is a special case of the q-binomial theorem.

1.11. The paper is organized as follows. Section 2 recalls background about lat-
tice polytopes and their normal fans, and discusses the connection between Hecke
operators and finite Grassmannians. Section 3 gives the proof of Theorem 1.4.
Section 4 discusses the computation of the Ehrhart polynomial using the Todd
operator, and Section 5 gives the proof of Theorem 1.8. Section 6 discusses ex-
plicit examples of Theorem 1.8 for three-dimensional polytopes, and relates the
identities occurring in the proof of Theorem 1.8 to Dedekind sums and the Hurwitz
zeta function. Finally, Section 7 addresses the problem of computing the average
Ehrhart polynomial as one varies over a family of superlattices.

2. Hecke operators and finite Grassmannians

2.1. Let P be a simple lattice polytope in the vector space V with vertices in the
lattice L. For convenience we fix a nondegenerate bilinear form 〈 , 〉 and use it to
identify V with its dual. We also assume that L is self-dual with respect to this
form.

Let F be the set of faces of P , and for any l let F (l) be the subset of faces
of dimension l. Let F ∈ F (n− 1) be a facet of P . Then F is the intersection of P
with an affine hyperplane

HF = {x | 〈x, uF 〉 + λF = 0},

where the normal vector uF is taken to be a primitive vector in L, and points into
the interior of P .

2Galois representations that are direct sums of powers of the cyclotomic character are sometimes
called punctual [1].
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2.2. Let f ∈ F (n − l) be a face of codimension l, and let Hf be the affine
subspace spanned by f . Since P is simple, there are exactly l hyperplanes in
{HF | F ∈ F (n − 1)} whose intersection is Hf . Let σf ⊂ V be the convex cone
generated by the corresponding normal vectors {uF }. The cone σf is called the
normal cone to f .

The set Σ = {σf | f ∈ F} of all normal cones forms an acute rational
polyhedral fan in V . This means the following:
(1) Each σ ∈ Σ contains no nontrivial linear subspace.
(2) If σ′ is a face of σ ∈ Σ, then σ′ ∈ Σ.
(3) If σ, σ′ ∈ Σ, then σ ∩ σ′ is a face of each.
(4) Given σ ∈ Σ, there exists a finite set S ⊂ L such that any point in σ can be

written as
∑

ρss, where s ∈ S and ρs ≥ 0.
Moreover, P simple implies Σ is simplicial, which means that in (4) we can take
#S = dimσ for all σ. The fan Σ is called the normal fan to P .

2.3. Let ρ ∈ Σ be a 1-dimensional cone. Then ρ contains a unique normal vector
uF , which we call the spanning point of ρ. For any cone σ, we denote by σ(1) the
set of spanning points of all 1-dimensional faces of σ, and write

Σ(1) =
⋃

σ∈Σ

σ(1).

There is bijection between Σ(1) and F (n − 1).
For any rational cone σ, let U(σ) be the sublattice of L generated by the

spanning points of σ. Put L(σ) = L ∩ (U(σ) ⊗ Q), and let Indσ = [L(σ) : U(σ)].
If Indσ = 1, then σ is called unimodular. Then P is nonsingular if and only if all
its normal cones are unimodular.

2.4. Now we recall some basic facts about Hecke operators for the linear group
GLn. Let p be a prime, and let V � Fn

p be the quotient p−1L/L. For any lattice M

satisfying p−1L � M � L, let M ⊂ V be the corresponding subspace. More
generally, for any rational subspace W ⊆ V we let W ⊆ V be the corresponding
subspace. Fix a positive integer k ≤ n, and let Gr(k, n) be the Grassmannian of
k-dimensional subspaces of an n-dimensional vector space.

Lemma 2.5. The set Lk of superlattices p−1L � M � L of coindex pk is in
bijection with the set T of upper triangular matrices of the form

⎛

⎜
⎝

pe1 aij

. . .
pen

⎞

⎟
⎠ ,

where
• ei ∈ {0, 1}, and exactly k of the ei are equal to 0,
• aij = 0 unless ei = 0 and ej = 1, in which case aij satisfies 0 ≤ aij < p.

Moreover, the map M �→ M induces a bijection between Lk and Gr(k, n)(Fp).
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Proof. It is well known that the set of sublattices L � N � pL of index pn−k

is in bijection with T [18, Prop. 7.2]. To realize this bijection, we take L = Zn,
and then any N is constructed as the sublattice generated by the rows of some
A ∈ T . The sublattice N determines a subspace N ⊂ V , generated by the k rows
with diagonal entry 1. It is clear that we obtain all k-dimensional subspaces of
V in this way, for example by considering the decomposition of Gr(k, n)(Fp) into
Schubert cells [13, p. 147]. Finally, both statements of the lemma follow from the
isomorphism p−1L/L � L/pL given by scaling by p, and from the fact that a
sublattice has coindex pk if and only if it has index pn−k. �
2.6. Let f ∈ F be a face of P , and let σf be the normal cone to f . Let Vf ⊂ V
be the linear subspace parallel to Hf , and let Cf be the linear span of σf . The
subspace Cf contains the distinguished 1-dimensional subspaces {Cρ | ρ ∈ σf (1)}.
Proposition 2.7. Let M ∈ Lk, and for any f ∈ F , let fM be the corresponding
face of PM . Then
(1) Vol fM = pdim(M∩V f ) Vol f ,
(2) Ind σfM

= pdim(M∩Cf )−r Ind σ,
where r = #{Cρ | ρ ∈ σf (1) and Cρ ⊂ M}.
Proof. Choose a Z-basis B of L such that B ∩ Vf is a Z-basis for L ∩ Vf . By
Lemma 2.5, with respect to B any M ∈ Lk is spanned by the rows of p−1A for
some A ∈ T . Each row of A with diagonal entry 1 contributes a factor of p to
Vol fM/ Vol f , which proves (1).

For Cf we argue similarly. The only difference is that each row of A with
diagonal entry 1 contributes a factor of p to IndσfM

/ Ind σf , unless the diagonal
entry is the only nonzero entry in the row. This situation corresponds to some
subspace Cρ being contained in M , and (2) follows. �

Proposition 2.7 allows us to give a geometric interpretation for the eigenvalue
ν(p).

Proposition 2.8. Fix nonnegative integers k, l ≤ n, and let p be a prime. Let
Voll : P(L) → Q be the function

Voll(P ) =
∑

f∈F(l)

Vol(f),

and define
T (p, k) Voll(P ) =

∑

M∈Lk

Voll(PM ).

Then T (p, k) Voll(P ) = νn,k,l(p) Voll(P ).

Proof. Suppose f ∈ F (l). According to Proposition 2.7, we have
∑

M∈Lk

Vol fM =
∑

M∈Lk

pdim(M∩V f ) Vol f. (9)

The right of (9) equals νn,k,l(p) Vol f , and the statement follows immediately. �



Vol. 13 (2007) Hecke operators and the Ehrhart polynomial 261

3. Proof of Theorem 1.4

3.1. Throughout this section we allow P to be a general lattice polytope. Let
U ⊂ V be a fixed subspace of dimension l as in §1.3, and recall

νn,k,l(p) =
∑

W⊂F
n
p

dim W=k

pdim W∩U .

Let Gk,n be the cardinality of the finite Grassmannian Gr(k, n)(Fp). It is well
known that

Gk,n =
[n]p!

[k]p![n − k]p!
, (10)

where [n]p = (pn − 1)/(p − 1), and [n]p! =
∏n

i=1[i]p.

Lemma 3.2. Let E = E(t) be the Ehrhart polynomial of P . Then

T (p, k)E(t) = Gk−1,n−1E(pt) + (Gn,k − Gk−1,n−1)E(t). (11)

In particular,

cl(T (p, k)E)/cl(E) = Gk,n + (pl − 1)Gk−1,n−1. (12)

Proof. We have
⋃

M∈Lk

M = p−1L, (13)

and since counting points in p−1L∩P is done by E(pt), we must count how often
a point x ∈ p−1L appears in the union (13). There are two separate cases, namely
(i) x ∈ p−1L � L, and (ii) x ∈ L. The former contribute to E(pt), and the latter
to E(t).

For (i), note that the point x determines a line Λx ∈ V , and the number
of k-dimensional subspaces containing Λx is Gk−1,n−1. For (ii), each x ∈ L will
appear in every Hecke image, which gives Gk,n in total. However, such points are
also counted in the sublattices contributing to (i). When these contributions are
subtracted, we obtain (11). This proves the first statement.

Finally, (12) follows easily from (11), since cl(E(pt)) = plcl(E(t)). �

Lemma 3.3. We have

νn,k,l(p) = Gk,n + (pl − 1)Gk−1,n−1. (14)

Moreover,
νn,k,l(p)/νn,n−k,n−l(p) = pk+l−n. (15)

Proof. We treat the case k ≥ l; the case k < l is similar.
For j = 0, . . . , l, let Yj be the locally closed subvariety of Gr(k, n)(Fp) defined

by
Yj = {W | dimW = k, dim(W ∩ U) = j},
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and let yj = #Yj . Note that
∑

j≥0 yj = Gk,n, and that νn,k,l(p) =
∑

j≥0 yjp
j .

Since y0 = Gk,n −
∑

j≥1 yj , it follows that

νn,k,l(p) = Gk,n +
∑

j≥1

yj(pj − 1). (16)

We prove the lemma by showing

[l]pGk−1,n−1 =
∑

j≥1

[j]pyj , (17)

which is equivalent to (14) and (16) taken together. To do this, we explicitly
describe Yj recursively in terms of {Yi | i > j}, and show that the right of (17)
telescopes to the left of (17).

Consider first Yl. Any point in Yl is given by choosing a k-dimensional sub-
space W in V containing U . Such subspaces are in bijection with (k−l)-dimensional
subspaces of V /U , and thus yl = Gk−l,n−l.

Next, any point in Yl−1 is given by choosing an (l− 1)-dimensional subspace
S of U , and then choosing a k-dimensional subspace W of V with W ∩U = S. The
subvariety of those W with W ∩ U ⊃ S gives Gl−1,lGk−(l−1),n−(l−1) points; this
is not yl−1 since for each S we have included those W that contain U , instead of
just meeting U in a subspace of codimension 1. The correct value of yl−1 is given
by subtracting the contributions corresponding to points in Yl, which gives

yl−1 = Gl−1,l(Gk−(l−1),n−(l−1) − Gk−l,n−l).

For the general Yj similar considerations apply. We summarize the results as
follows. For j = 1, . . . , l let Uj ⊂ Fn−j

p be a fixed subspace of dimension l − j, and
let Zl be the subvariety of the Grassmanian Gr(k − j, n − j)(Fp) of all (k − j)-
dimensional subspaces W such that W ∩ Uj = {0}. Putting zj = #Zj , we have

zj =

⎧
⎪⎨

⎪⎩

Gk−l,n−l, j = l,

Gk−j,n−j −
l−j∑

i=1

Gi,l−jzi+j , j < l.

Then
yj = Gj,lzj , j = 1, . . . , l,

and in particular

y1 = G1,l(Gk−1,n−1 − G1,l−1z2 − G2,l−1z3 − · · · − Gl−1,l−1zl). (18)

Finally, using (10) we see

[1]pG1,lGk−1,n−1 = [l]pGk−1,n−1, (19)

and
[j]pGj,l = [1]pG1,lGj−1,l−1. (20)

Using (19) and (20) with (18) shows that the right of (17) telescopes to the left of
(17), which proves (14). A simple computation yields (15) from (14), and Lemma
3.3 is proved. �
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Lemmas 3.2 and 3.3 imply almost all of Theorem 1.4. Equations (12) and
(14) imply (5), and the existence of the polynomial Φn,k,l from (4) is clear by
(10) and (14). The only remaining statement is the positivity of the coefficients of
Φn,k,l. To see this, fix a complete flag

{0} = U0 � U1 � · · · � Un = V ,

where dim Uj = j. We define a polynomial Φ̂n,k ∈ Z[x0, . . . , xn] by

Φ̂n,k =
∑

W⊂V
dim W=k

∏
x

dim W∩Uj

j . (21)

Clearly Φn,k,l(p) is obtained from Φ̂n,k by the substitutions xl = p and xj = 1
if j 
= l. We claim Φ̂n,k is a polynomial with positive coefficients. Indeed, the
distinct monomials xα :=

∏
x

αj

j in (21) correspond to the different possibilities of
intersections of W with the fixed flag, which correspond to the decomposition of
Gr(n, k)(Fp) into Schubert cells Sα [13]. Thus we can rewrite (21) as

Φ̂n,k =
∑

α

#Sα(Fp)xα.

But each Schubert cell is isomorphic to an affine space, and hence the coefficients
#Sα(Fp) are pure p-powers. This completes the proof of Theorem 1.4.

Remark 3.4. We have the following additional geometric interpretation of the
eigenvalue νn,k,l(p). Let T be the total space of the rank n trivial bundle over
G(k, n)(Fp), and let Tl ⊂ T be the subbundle corresponding to a fixed l-dimensional
subspace. Let B be the total space of the tautological bundle over G(k, n)(Fp), i.e.
for any x ∈ G(k, n)(Fp) the fiber Bx over x is the k-dimensional subspace corre-
sponding to x. Then

vn,k,l(p) = #(B ∩ Tl).

4. The Todd operator

4.1. In this section we describe the Todd operator Td(Σ, ∂/∂h) and how it can
be used to compute the Ehrhart polynomial of a simple lattice polytope P . We
closely follow [5].

Recall that F is the set of faces of P , and that each facet F ∈ F (n − 1)
determines an affine hyperplane

HF = {x | 〈x, uF 〉 + λF = 0},
where the normal vector uF ∈ L is a primitive vector pointing into the interior
of P .

Let h = (hF )F∈F(n−1) be a real multivariable indexed by the facets of P ,
and let P (h) be the convex region determined by the inequalities

{〈x, uF 〉 + λF + hF ≥ 0 | F ∈ F (n − 1)}. (22)
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Note that P (0) = P . Then P (h) is isomorphic to P for small h, and thus for
small h one can consider the volume VolP (h). The following examples will play
an important role in the proof of Theorem 1.8.

Example 4.2. Let e1, . . . , en be the canonical basis of Rn, and let e0 = 0. Let P =
Δn be the convex hull of the vectors {e0, . . . , en}. Then Δn is the n-dimensional
simplex. Let hi be the parameter attached to the facet obtained by deleting the
vertex ei. It is easy to check that

Vol Δn(h) =
(
1 +

n∑

i=0

hi

)n

/n!.

Example 4.3. Let P and P ′ be two lattice polytopes, and let h and h′ be multi-
variables indexed by their facets. Then

Vol(P × P ′)(h, h′) = Vol P (h) VolP ′(h′).

In particular, for the unit n-cube P = (Δ1)n we obtain

Vol P (h) =
n∏

i=1

(1 + hi + h′
i).

4.4. Let Σ be the normal fan to P . For any σ ∈ Σ, define

Q(σ) =
{ ∑

s∈σ(1)

ρss
∣
∣
∣ 0 ≤ ρs < 1

}
.

Note that Vol Q(σ) = Indσ, and Q(σ)∩U(σ) = {0} if and only if σ is unimodular.
Put

ΓΣ =
⋃

f∈F

Q(σf ) ∩ L.

We have ΓΣ = {0} if and only if P is nonsingular.

4.5. For each F ∈ F (n − 1), let ξF : V → R be the unique piecewise-linear
continuous function defined by

• ξF (s) = 1 if s ∈ Σ(1) is the spanning point corresponding to F ,
• ξF (s′) = 0 for all other s′ ∈ Σ(1),
• ξF is linear on all the cones of Σ.

Put aF (x) = exp(2πiξF (x)) for all x ∈ V .
Suppose g ∈ ΓΣ ∩ σ. Then the pair (g, σ) determines a tuple of roots of

unity as follows. If s1, . . . , sl are the spanning points of σ, and F1, . . . , Fl are the
corresponding facets, then we can attach to (g, σ) the tuple (a1(g), . . . , al(g)),
where we have written ai for aFi

.
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4.6. Let a be a complex number and x a real variable. We define Td(a, ∂/∂x) to
be the differential operator given formally by the power series

∂/∂x

1 − a exp(−∂/∂x)
=

∞∑

k=0

c(a, k)
(

∂

∂x

)k

.

Note that c(1, k) = Bk/k!, where Bk is the kth Bernoulli number.3 If a 
= 1, then
c(a, k) is a rational function in a of degree −1 closely related to the kth circle
function of Euler (§6.2). Table 2 gives some examples of the c(a, k).

Table 2. The coefficients c(a, k)

k c(a, k)
1 −1/(a − 1)
2 −a/(a2 − 2a + 1)
3 −(a2 + a)/(2a3 − 6a2 + 6a − 2)
4 −(a3 + 4a2 + a)/(6a4 − 24a3 + 36a2 − 24a + 6)

4.7. Now let h be a multivariable with components hF indexed by the facets of P .
Let g ∈ ΓΣ, and define

Td(g, ∂/∂h) =
∏

F∈F(n−1)

Td(aF (g), ∂/∂hF )

and

Td(Σ, ∂/∂h) =
∑

g∈ΓΣ

Td(g, ∂/∂h). (23)

We have the following theorem, proved by Khovanskĭı–Pukhlikov if P is nonsin-
gular, and by Brion–Vergne for general simple lattice polytopes.

Theorem 4.8 ([5,21]). Suppose P is a simple lattice polytope. Then the coefficients
of the Ehrhart polynomial EP (t) =

∑n
i=0 cit

i are given by

cn−l = Tdl(Σ, ∂/∂h) VolP (h)
∣
∣
h=0

,

where Tdl(Σ, ∂/∂h) is the degree l part of Td(Σ, ∂/∂h).

For the connection between coefficients of the Todd operator and higher-
dimensional Dedekind sums, we refer to [2, §9].

3With our conventions the Bernoulli numbers are B1 = 1/2, B2 = 1/6, B4 = −1/30, . . . , and
B2k−1 = 0 for k > 1. Note that for many authors B1 = −1/2, cf. §6.2.
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5. Proof of Theorem 1.8

5.1. We recall some notation from §1.7. Let f ∈ F be a face of codimension
≤ l, and let π = (π(F ))F⊃f be an ordered partition of l indexed by the facets
containing f . We expand (23) as a sum over pairs

Tdl(Σ, ∂/∂h) =
∑

(f,π)

A(f, π)∂π
f ,

where
∂π

f =
∏

F⊃f

(∂/∂hF )π(F )

and
A(f, π) =

∑

g∈Γ∩σf

∏

F⊃f

c(aF (g), π(F )). (24)

Note that if σf is unimodular, then

A(f, π) =
∏

F⊃f

Bπ(F )

π(F )!
. (25)

5.2. Now fix a total ordering on (unordered) partitions of l by using the lexico-
graphic order. In other words, let π = {π1, . . . , πj} and π′ = {π′

1, . . . , π
′
k} be two

partitions of l with parts arranged in nonincreasing order. Then we have π < π′

if and only if there exists an index m with πi = π′
i for i < m and πi < π′

i for
i ≥ m. For example, if l = 6, then in increasing order (and in obvious notation)
the partitions are

16, 214, 2212, 313, 321, 32, 412, 42, 51, 6.

5.3. We say the pair (f, π) is squarefree if π(F ) = 1 for all F ⊃ f , and we write
π = 1. We begin with two lemmas. Lemma 5.4 gives a geometric interpretation of
the squarefree terms, and Lemma 5.6 allows us to compute nonsquarefree terms
using squarefree terms.

Lemma 5.4. Let P be simple. For any face f ∈ F , we have

∂1
f VolP (h)

∣
∣
h=0

=
Vol f
Ind σf

.

In particular, if P is nonsingular and f has codimension l, then

A(f,1)∂1
f Vol P (h)

∣
∣
h=0

=
Vol f

2l
.

Proof. The first statement is Lemma 4.7 in [5]. The second statment follows from
(25) since the Bernoulli number B1 is 1/2, and Indσf = 1 if P is nonsingular. �
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5.5. The following result is well known to experts, and is stated (for nonsingular
P ) in [21, Theorem, p. 795]. For the convenience of the reader we present a proof
for P simple. For unexplained concepts from toric geometry, we refer to [12]. What
we will need from Lemma 5.6 is (26).

Lemma 5.6 ([4]). Let X be the projective toric variety associated to the simple
lattice polytope P . Then the rational Chow ring H∗(X, Q) is isomorphic to the
quotient of

Q [∂/∂hF | F ∈ F (n − 1)]

by the ideal I of differential operators that annihilate the function VolP (h).

Proof. The rational Chow ring H∗(X, Q) has generators the classes of the divisors
[DF ], F ∈ F (n − 1), and the following relations:

• square-free monomial relations
∏

F∈I [DF ] = 0 unless the facets in I intersect
transversally along a face of P , and

• linear relations
∑

F 〈w, uF 〉[DF ] = 0, where w ∈ L.

But the analogous relations hold for Q[∂/∂hF | F ∈ F (n−1)] applied to VolP (h);
for example, the linear relations express invariance of volume under translation.
Thus, we obtain a surjective homomorphism of graded rings

H∗(X, Q) → Q[∂/∂hF | F ∈ F (n − 1)]/I, [DF ] �→ ∂/∂hF ,

where the ∂/∂hF have degree 2. To show its injectivity, it is enough (by Poincaré
duality) to show that all intersection numbers of the form [DF1 ] · · · [DFn

] can be
read off from the images of the DF . But this follows from the formula

(∑

F

(λF + hF )[DF ]
)n

= Vol P (h),

where the λF come from the inequalities (22) determining P (h). Indeed, since
the hF are independent variables, any monomial of degree n in the [DF ] can be
expressed in terms of partial derivatives of VolP (h). �

5.7. Let w ∈ L. Then by Lemma 5.6 the differential operator
∑

F∈F(n−1)

〈w, uF 〉∂/∂hF (26)

annihilates Vol P (h). Hence if π > 1, by repeatedly applying (26) we can write

∂π
f Vol P (h) = εf (π)

∑

f ′

( ∏

w∈W (f ′)

〈w, uw〉
)
∂1

f ′ Vol P (h), (27)

where the quantities in (27) satisfy the following:

• The integer εf (π) ∈ {±1} depends only on the pair (f, π).
• The sum ranges over a finite set of codimension l faces f ′, each of which is

contained in f .
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• For each f ′, the set W (f ′) ⊂ L ⊗ Q satisfies
◦ 〈w, u〉 = 1 for some u ∈ σf (1),
◦ 〈w, v〉 = 0 for all v ∈ σf (1) � {u}.

• The {uw} ⊂ Σ(1) are such that for each f ′, we have

σf ′(1) = σf (1) ∪ {uw}w∈W (f ′).

• The sets W (f ′) are ordered and

〈w′, uw〉 = 0 for all w < w′.

We choose and fix an expression of the form (27) for each pair (f, π).

5.8. We are now ready to prove Theorem 1.8. Our goal is to show
∑

M∈Lk

A(fM , π)∂π
f VolPM (h) = νn,k,n−l(p)A(f, π) VolP (h). (28)

Let ν(p) = νn,k,n−l(p). Applying (27) in (28) and using Lemma 5.4, we see that it
suffices to verify

∑

M∈Lk

A(fM , π)
∑

f ′
M

( ∏

w∈W (f ′
M )

〈w, uw〉
) Vol f ′

M

Ind σf ′
M

= ν(p)A(f, π)
∑

f ′

( ∏

w∈W (f ′)

〈w, uw〉
)

Vol(f ′). (29)

Since the faces f ′ appearing in (27) are independent of the lattice M , we
can interchange the sum over Lk and the sum over f ′

M , and focus on a single f ′.
Furthermore, Lemma 2.5 implies that the sum over M in (29) is really a sum over
Gr(k, n)(Fp). We construct a stratification {Xij} of Gr(k, n)(Fp) by defining

Xij = {W ⊂ V | dimW = k, dimW ∩ V f = i, dimW ∩ Cf = j}, (30)

and the left of (29) becomes

∑

i,j

∑

M∈Xij

A(fM , π)
( ∏

w∈W (f ′
M )

〈w, uw〉
) Vol f ′

M

Ind σf ′
M

.

Now let Sj ⊂ Cf be a fixed subspace of dimension j, and put

mij = #{M ∈ Xij | M ⊃ Sj}. (31)

The number mij is independent of the choice of Sj . If M ∈ Xij , then

Vol f ′
M = pi Vol f ′, (32)
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and equation (29) becomes
∑

i,j

pimij

∑

S⊂Cf′
dim S=j

A(fS , π)(Indσf ′
S
)−1

∏

w∈W (f ′
S)

〈w, uw〉

= ν(p)A(f, π)
∏

w∈W (f ′)

〈w, uw〉, (33)

where we have written

A(fS , π) =
∑

g∈Γ∩σfS

∏

F⊃f

c(aF (g), π(F )). (34)

Note that it makes sense to replace the subscript M with S in (33) and (34), since
Ind σf ′

M
(respectively Γ ∩ σfM

) depends only on S = M ∩ Cf ′ (resp., Cf ). The
notation W (f ′

S) also makes sense, because all points in W (f ′
M ) are multiples of

points in W (f ′) (in fact they differ at most by a factor of p), and which multiples
we take depends only on S.

To verify (33), we show that for each j the identity
∑

S⊂Cf′
dim S=j

A(fS , π)
∏

w∈W (f ′
S)

〈w, uw〉(Ind σf ′
S
)−1

= Gj,lA(f, π)
∑

f ′

( ∏

w∈W (f ′)

〈w, uw〉
)

(35)

holds. This will complete the proof of the theorem, since
∑

i,j

pimijGj,l = ν(p).

We verify (35) by induction on the partition order; the main idea is to show
that (35) appears in the computation of the constant term of T (p, j)E(P ) for some
easily understood polytope P . Since we know how the constant terms transform
under the Hecke operators, our identity is forced to hold. In particular, let

P =
∏

F⊃f

Δπ(F ),

where in the product the facets F are ordered so that π has nonincreasing parts.
Using Examples 4.2 and 4.3, we see that the highest order terms contributing to
E(P ) and T (p, j)E(P ) are those of type (f, π), where f is a vertex. Now assume
that all weight l terms of type (f, π′) with π′ < π satisfy (35). Since the constant
term of T (p, j)E(P ) equals Gj,l, and since each vertex of P contributes equally to
the constant term, this implies (35).

Hence to complete the proof, we must check (35) in the case π = 1. In this
case we do not need to apply (27), since the terms are already squarefree. In view
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of (25), the identity to be proved is
∑

S⊂Cf

dim S=j

(Ind σfS
)−1A(f,1) =

Gj,l

2l
. (36)

To prove (36), we let P = (Δ1)l and consider the action of T (p, j) on the constant
term of its Ehrhart polynomial. By Example 4.3, we have

Vol P (h) =
l∏

i=1

(1 + hi + h′
i).

We see from applying Tdl to Vol P (h) that only squarefree terms contribute to the
constant term of E(P ), and that this contribution is the same for all vertices of
P (in fact, it is 2−l). Moreover, using the matrices given in Lemma 2.5, it is easy
to see that only squarefree terms contribute to the constant term of T (p, j)E(P ),
and that the contribution for any vertex f is equal to

∑

M∈Lj

(IndσfM
)−1A(fM ,1). (37)

But under T (p, j) the constant term of E(P ) is multiplied by Gj,l, and because
the contribution of each vertex is the same, we see that (37) equals Gj,l/2l. This
completes the proof of (36), and the proof of Theorem 1.8.

Remark 5.9. We expect that Theorem 1.8 holds if P is replaced by a general
simple lattice polytope, although the argument presented here does not prove
this. In fact, Theorem 1.4 suggests that the analogous result for a general lattice
polytope should hold, and indeed for the vector partition functions studied in [6].

Remark 5.10. The role of the polytopes
∏

F⊃f Δπ(F ) in the proof of Theorem 1.8
is very similar to the role of “basis sequences” in the theory of characteristic classes
and genera (cf. [15, p. 79]). This is not a coincidence, since the machine behind
the computation of cl in Theorem 4.8 is the Hirzebruch–Kawasaki–Riemann–Roch
theorem.

6. Examples of distribution relations

6.1. In this final section, we give examples of the identities appearing in the
proof of Theorem 1.8, and directly prove them by exhibiting their connection with
special values of the Hurwitz zeta function.

6.2. Let u be a real number, and let k be a positive integer. Consider the special
value of the (symmetrized) Hurwitz zeta function

ζ(k, u) =
∑′

m∈Z

1
(m + u)k

.



Vol. 13 (2007) Hecke operators and the Ehrhart polynomial 271

Here the prime next to the summation means to omit the meaningless term that
arises when u ∈ Z. The series is absolutely convergent unless k = 1, in which case
we define the value of ζ(1, u) to be the limit of the partial sums with |m| < C as
C → ∞. Define the circle functions θk(u) by the series expansion

z

exp(z − 2πiu) − 1
=

∞∑

k=0

θk(u)
zk

k!
.

If u > 0 and k > 1, then θk(0) = Bk, the kth Bernoulli number as in §4.6. However,
note that c1(0) = −B1.

By a result of Euler, for all u we have

ζ(k, u) =

⎧
⎪⎪⎨

⎪⎪⎩

− (2πi)k

k!
θk(u), k > 1,

− (2πi)k

k!
(θk(u) + 1/2), k = 1.

(38)

6.3. Now fix a positive integer n, and suppose k > 1. It is easy to see that
n−1∑

j=0

ζ(k, j/n) = nkζ(k, 0).

Using (38), this becomes
n−1∑

j=1

θk(j/n) = (nk − 1)Bk. (39)

Comparing the definition of c(a, k) from §4.6 yields

c(a, k) =
(−1)k

k!
θk(u), a = exp(−2πiu),

which in (39) gives
n−1∑

j=1

c(ωj , k) =
nk − 1

k!
Bk, k > 1. (40)

Here we have written ω = exp(2πi/n) and used the fact that the sum on the left
of (40) is real. In fact, (40) remains true if we take k = 1.

6.4. Let now P be a 3-dimensional nonsingular lattice polytope; we investigate the
computation of T (p, 1) on c1. We focus on the squarefree case, since no Dedekind
sums arise in the nonsquarefree case.

So let f be an edge of P . The key identity (28) becomes
∑

M∈L1

A(fM ,1)
Vol fM

Ind σfM

=
p2 + 2p

4
Vol f. (41)

We break the coefficient A = A(fM ,1) into two parts,

A = Ans + As,
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where Ans corresponds to g = 0 in (24), and As corresponds to g 
= 0. The latter
term appears only if IndσfM


= 1. Note that Ans = 1/4.
To analyze the left of (41), we use Proposition 2.7. Figure 1 shows V with

the two subspaces V f and Cf . The subspaces C1 and C2 are the 1-dimensional
subspaces corresponding to the two facets containing f . For simplicity, we draw
these subspaces, and the subspaces that follow, by drawing their images in P(V ) =
P2(Fp). By abuse of notation, we denote a subspace of V and the subspace it
induces in P(V ) by the same symbol.

V f

Cf

C1

C2

Fig. 1. Subspaces in V for an edge in a 3-dimensional polytope.

Each M ∈ L1 corresponds to a point M ∈ P(V ). By Proposition 2.7, we
have Vol fM = Vol f unless M = V f , in which case Vol fM = p Vol f . Also As = 0
unless M meets Cf � {C1 ∪ C2}. Hence there are p − 1 nonzero As, and since
c(a, 1) = 1/(1 − a), each nonzero As has the form

As(α, β) =
p−1∑

i=1

1
(1 − ωαj)(1 − ωβj)

, ω = exp(2πi/p),

for some nonzero integers 1 ≤ α, β ≤ p − 1. The value of As(α, β) depends only
on the point [α : β] ∈ P1(Fp). See Figure 2 for the four nonzero As(α, β) when
p = 5. The pairs (α, β) are given below each lattice, and the four terms in As(α, β)
correspond to the four grey dots.

(1, 1) (1, 2) (1, 3) (1, 4)

Fig. 2. Four superlattices giving a nonzero As(α, β).
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By (40), the contribution from the singular Hecke images is

∑

[α:β]∈P
1(Fp)

[α:β] 
=0,∞

As(α, β) =
p−1∑

i,j=1

1
(1 − ωi)(1 − ωj)

=
(p − 1)2

4
.

With this in hand it is easy to complete the analysis of (41). We break P(V ) into
four disjoint subsets,

P(V ) = S1 ∪ S2 ∪ S3 ∪ S4,

where

• S1 = V f ,
• S2 = C1 ∪ C2,
• S3 = Cf � S2,
• S4 = P(V ) � {S1 ∪ S2 ∪ S3}.

The relevant contributions are given in Table 3, and one easily sees that (41) holds.

Table 3. Summary of T (p, 1) on c1 for a 3-dimensional polytope

Si #Si Vol fM/ Vol f Ind σf/ IndσfM

∑

M∈Si

A(fM ,1)

S1 1 p 1 1/4
S2 2 1 1 1/2
S3 p2 − 1 1 1 (p2 − 1)/4
S4 p − 1 1 1/p (p2 − 1 + p − 1)/(4p)

6.5. The computation of T (p, 2) on c1 is similar. The only difference is that the
sum over M corresponds to a sum over lines in P(V ), and that we obtain a nonzero
As exactly when a line meets S3 in a point. For example, in Figure 3 a nonzero
As(α, β) arises from the solid triangle. Hence each nonzero As(α, β) occurs with

M

V f

Cf

C1

C2

Fig. 3. Computing T (p, 2) on c1.
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multiplicity p. Taking this into account, as well as which lines meet V f , yields
∑

M∈L2

A(fM ,1)
Vol fM

Ind σfM

=
2p2 + p

4
Vol f.

7. The regularized Ehrhart polynomial on average

7.1. Let P be a fixed n-dimensional lattice polytope respect to the lattice L. We
can define a “regularized” version Ẽ(P ) of E(P ) by

Ẽ(P )(t) := E(P )(t)− Vol(P )tn.

Suppose M is a finite set of superlattices of L of finite coindex. We can define
the average regularized Ehrhart polynomial of P with respect to the family M by

Ẽavg(P, M ) =
1

#M

∑

M∈M

Ẽ(PM ).

Our goal in this section is to show how Theorem 1.4 can be used to derive limit-
ing formulas for Ẽavg(P, M ) as M ranges over families of superlattices satisfying
certain arithmetical conditions.

7.2. As a first example, fix a prime p, and suppose M = L1(p) consists of all
superlattices of L of coindex p. Then by definition

Ẽavg(P, M ) = G−1
1,n

n−1∑

l=0

T (p, 1)clt
l = G−1

1,n

n−1∑

l=0

νn,1,l(p)clt
l.

By Lemma 3.2, we have

νn,1,l(p) = G1,n + pl − 1 = pn−1 + · · · + pl+1 + 2pl + pl−1 + · · · + p.

This implies the following result:

Proposition 7.3.

lim
p→∞

p prime

Ẽavg(P, L1(p)) = 2cn−1t
n−1 + cn−2t

n−2 + · · · + c1t + 1.

7.4. We can use the relations in the Hecke algebra to derive similar results for
more general sets of superlattices. Let Tp(n, k) be the operator T (n, k) at the
prime p, and write T (N) for the operator that associates to any lattice L the set
of superlattices of coindex N . Suppose N has prime factorization

∏
p

ej

j . Then, in
the algebra H generated by the Tp(n, k) as p ranges over all primes, we have [22,
Theorem 3.21]

T (N) =
∏

T (pej

j ),

and the operators T (pe) satisfy the (formal) identity
∞∑

e=0

T (pe)Xe =
( n∑

i=0

(−1)ipi(i−1)/2Tp(n, k)Xi
)−1

.
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As an example of this, suppose M (p2) is the set of all superlattices of L of
coindex p2. Note that M (p2) 
= L2, i.e. T (p2) 
= Tp(n, 2). In fact in H we have
the relation

T (p2) = Tp(n, 1)2 − pTp(n, 2).
One can easily show

#M (p2) = G2
1,n − pG2,n = G2,n+1,

and then from Lemma 3.2 we find the following:

Proposition 7.5.

lim
p→∞

p prime

Ẽavg(P, M (p2)) = 3cn−1t
n−1 + cn−2t

n−2 + · · · + c1t + 1.
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