Canadian Slathematical Sociary
Conference Froceedings
Volume 15, 1905

Which primes are sums of two cubes?

FERNANDO RODRIGUEYZ VILLEGAS AND DON ZAGIER

ABRSTRACT, Let Sp be the “unknown™ part of the L-series of the elliptic
curve % 4+ 3! = poat 8 = 1, so that conjecturally S, = 0 if p is A sum
of two distinet cubes and equals the order of & Tate-Shafarevich group
otherwise. The guestion of the title is then to determine whether 5p = 0
For p # 1 [mod 9) the apswer depends only on g (mod 9) and is well
known, We give three different criteria for the remaining case. Our first
formula represents S, as the trace of & certain algebraic number [the value
of a specific modular function at a CA point], the second represents Sy
as the square of the trace of a similar pumber, and the third shows that
Sp ovamshes il an only i T"l-ri[P-ll.-‘ﬂw}' where { fo ()} 20 I8 a sequence of
polvnomials satiafyving a simple recursion relation.

1. Introduction and results

A classical problem of Diophantine analysis is to recognize which numbers
are the sum of two rational cubes. For instance, 1 is not so represented (Fermat,
Euler), whereas every prime of the form 9%k — 1 conjecturally is [ Sylvester). If we
assume the Birch—-Swinnerton-Dyer conjecture, then the question is equivalent
to the vanishing at s = 1 of the L-series of the elliptic curve E+ : X? 4+ V3 = N,

We consider only the case when N = pis prime. I[f p = 2,3 0r 3 (mod 9}, then
L{E,, 1} # 0, s0 p should not be a sum of two cubes (except for 17 + 1% = 2),
This is in fact true and follows either from a 3-descent argument [given already
in the 19th century by Sylvester, Lucas and Pepin] or from the Coates-Wiles
theorem. If p =4, T or 8 (mod 9) then the functional equation forces L{FE,, 1)
to vanish, so p should be a sum of two cubes, and for the first two of these three
cases a proof of this has been announced by Noam Elkies. From now on we
restrict to the remaining case p = 1 (mod 9). Here the f-series may or may not
vanish. The question is numerically decidable for any given prime, since
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where 5, is known to be an integer (conjecturally equal to 0 if £,{Q) # {0} and
to the order of the Tate-Shafarevich group of E, otherwise), but a table of these
numbers, such as the one for p < 2000 given at the end of this section, sugpests
no simple pattern. In this paper we will give three formulas for 5, and hence
three conjectural answers to the question of the title. Most of the proofs rely on
ideas similar to those in [5] and [T] and have been omitted or only sketched, but,
to quote from Sylvester's paper on the same subject [9], I trust my readers will
do me justice to believe that I am in possession of a strict demonstration of all
that has been advanced without proof.” We do include a few short proofs which
use ideas different from those in the two papers cited.

First answer: We associate to the prime p = 9% + | an algebraic number o, of
degree 185, defined as follows

o _ vP 8ipd)
T B4 B8

where ©(2) =5 3~ .2 gdmilm®pmntntiz gpg 5 = Li14+1/3v=3). (The value
of 8(&), by the way, is -EF[%}:ﬂj[Eﬁ]E_] Then

Sp = Triag),

where Tr denotes absolute trace. A more detailed statement is given in Theo-
rem 1 below.

Second answer: This has the same form, but gives the square roof of Sy, As a
trace (thus proving, in particular, that 5, is a square, as expected). Of course
Sp has two square roots when nonzero. It turns out that they are canonically
indexed by the two primes above p in K = Q(+/=3). Let P he one of these
primes. Choosing P is equivalent, via P = (p, L—:::EL to choosing an integer
r {mod 2p) with r? = —3 (mod 4p). Let 2y = (r + +/=3)/2 and set

g, — _¥P_nipx)
T VELZn(z0/p)

where n{z) = em/12 [T (1 —e*™ =) is Dedekind’s eta function, the sign is +1
if p=3 (mod 4) and —1if p=1 {mod 4), and the correct choice of the 6" root
of p will be explained later, Then 3p is algebraic of degree 6k over QQ and we
have

Sp = [Te(3p))%, and Tr(fs) = —Tr(gp).
A more detailed statement is given in Theorem 2 below,
Third answer: Define polynomials f,(t) by fo(t) =1, fi(t) = t* and

Jasalt) = (1=£) FL{) + (2n+ 1) folt) — 0%t fua(t) (0= 1),



WHICH PRIMES ARE SUMS OF TWO CURES? T
and let Ay = fa,(0). (It is trivial that f,(0}) = 0if 3 does not divide n.) Then
_ 1 — 11} .IT-'I —1 '
5 = {_S}H_{T}HAEI'}J-]}JU {mod p).

This determines S, since |S,| < p/2 as we shall prove in §5. In particular, we
have
-["[-E-:_,'-.h 1::| =) — Flr’lz[ﬁ,_ 1% /8

Third answer (variant): In fact, the Ay's of the third answer (which are
normalized central values of certain Hecke L-series) are always squares, and
we can get their square roots as follows. Define polynomials g,.(t) € Qt] by
gn(t) =1, gy (t) = 2t* and

g1 (6] = (1= ) g (t) = (2n+ 2) P ga(t) = nln - J)tgni(t) (n=1),
and let By = gax(0). (Just as with f,, g,(0) = 0 if 3 does not divide n.) Then
Aoy = BE, forall k=0

and in particular
LI:E]'-H l:l' = n EE .I-J|EI_;|.I—'I T
and

— 1 —1n =1
v S]'-‘ = .'.|.'|:"..|' —Ele_-"— EPT:}P B._p 11/9 f]‘l'.l'.'li'] pj

We conjecture that this formula is always true with the + sign if we interpret

v Ip and /=3 (mod p) as Tr(3p) and v (mod p}, respectively (with v, P, Ap
a5 in the second answer), and have checked this for p < 2000,
We give a short table of values of the numbers B,

B;

1

—2

—152

— 6848

— 8103296

22483012060
—B062284861440)
196434444070666240
532650564250569441280
2030228675045 199496806400
—5209573728611533514689740800 |

wioo|=1|con| el | ||

L

i
| =

This also gives the first values of the numbers Ay, = B, The odd-index values
Azi 41, which are not needed for our “third answer,” are also the squares of
the constant terms of certain polynomials eg. () satisfying a recursion (ef.
Theorem 3 below, where a short table is given).
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The numbers Ay and By have a different description in terms of penerating
functions:

F 1 1,2 — = ‘4‘* TI:
(3:3 ?ul'}—zf—.&'k?
k=0

and

That the coefficients in the first of these hy pergeometric expansions are the
squares of the coefficients in the second is a surprising and beautiful identity,
quite apart from the connection with L-series.

There are snmtar results for the number Sye corresponding to the elliptic curve
Ep 3 gt = p? namely

47
=
el
L
|

4 }JEr__.J
.f; > = 'I':[ N E_I ":.- —
F re) " V120 —Zy Hfi'a":'

for a certain root of unity ¢, and
EPH = {) — }'I',I.‘il:'p_l:.l.-g f— ﬁiEHP..”;L_}.

Howewver in the rest of this note we will stay with 5,
Using any of the “answers” given in this section, we can casily calculate S

numerically. We give a table for p = 1 (mod 9), p < 2000. In this range, the
value of Sy is always 0, 1 or 4, as follows:

Sp=0: 19,37,127,163, 271,379,397, 433, 523, 631, 829, 883, 919,
937, 1063, 1171, 1459, 1531, 1567, 1621, 1657, 1801

Sp=1: 73,109, 181,199, 307, 487, 541, 577,613, 757, 811, 1009,
1117,1153,1279, 1297, 1423, 1549, 1693, 1783

S;=4: 739,991,1747, 1873, 1940

A complete table of Sy for N < 1000 is given in 10].

2. The formulas for S,

Let O = Z[w]| C K = Q(w) = Q(v=3). where w? +u+l—[J1.f 3=2w+1,
and embed K in C viaw — e*™/3 The elliptic curve £ : 27 49 = 1 has complex

multiplication by (2. Its L-series is L4, 3), where 4 is the Hecke character of K
satisfving

V(o)) =a, forallae® a=1 (mod 3.
Let p =1 (mod 3) be a prime. We consider the ErOUps

= (O/pO) [{Z/pZ) and Ay = AJO,
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which are cyclic of orders p — 1 and (# = 1)/3 respectively. We let Hap (H,)
be the ring class field modulo 3p (modulo p) of K and identify A (Ay) with
Gal(Hy, /K (Gal(H,/K)) via the Artin map.

Let x © A — {w) be the cubic character defined hy

7l '::1'-'_]]."':3
yiu) = (T—) {mod p) (u € O, (u,p) =1).
i

Then L{vy,s) and L(yy?, 8) are the -series of the curves Ly, and E,, respec-
tively. The sign in their functional equation is +1 if and anly if p = | (mod 9)
or, equivalently, if and only if X factors through A,

The formulas for Sy that we will obtain involve linear combinations of values
af certain modular forms on CM points in the upper-half plane corresponding
to A and Ay We need to introduce the following notation in order to do this

explicitly,

1) Let & = (~1-1/3/=3)/2 € KrH. where H denotes the complex upper-half
plane. As usual n will denote Dedekind's eta function. As a set of representatives
for & we take the numbers 1 and & — ke, with & € Z/pZ such that & — k is prime
to p (hence excluding two values and bringing the total to p — 1).

Let piy 0 A — C be.given hy

Em i

| 8=
=550 -k = é{;J—J (k€ Z/pZ. (8~ k,p) = 1),

with &(z) as in §1. The function tp is well defined and its values are conjugate
algebraic integers in Hy, /K.

Note that p¥ & Hj, and that pt ¢ Hyifand onlyifp =1 (mod 9). We define
Kp = p‘g,r.cﬁ['ljl = péﬁfpﬁ],fﬂ(ﬁj. It belongs to Hy, and its conjugates over K
are {p” 3% (uhup(u) - u € A},

1“1:{1:'

THEOREM 1. Let p=1 [mod ) be prime. With the above notation we have

Tpty, i (rp) = p 8 Z Xlu)pp(u) = 278,
=0

where &, € Z 43 the Birch-Swinnerton-Dyer number defined in the introduction,

2) We choose w a primitive cube of unity modulo p: this corresponds, via P =
(w—w,p), ta choosing a prime P of @ above p- As a set of representatives for A
we take the numbers 1 and w—k, where k runs over Z/pZ\{w, —1—w,0, =1}/ ~,
and where ~, defined by k ~ —1 JlR+1) ~ —1-1/k, corresponds to orbits under
multiplication by w. (The values of w — k for k =0 or —1 represent the same
class as 1 in Ag).

Let Ap: Ag — C be given by

Aplw — k) = (“’?k) G n) (K€ 2B, k-1 - )
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Ap(l) = G) o/ T ) (),

™

and €, = 1,7 if p=1,3 {mod 4). The function Ap is well defined and its values
are conjugate units in an abelian extension of K, which is quadratic over i e

Let r be a solution of r? = =3 (mod 4p) such that r = 2w + 1 (mod p), and

let zp = (r + +/=3)/2. We define pp = { i) T 2 p) falw). Tt is not,

Ie

~ Kk T | )
where (w_) = ( . ) is the quadratic symbol at P, ¢y, = fzm;zul VB >0,

hard to check that p3, € O generates P. Finally, we let £p = ﬂ:ﬁ_*ﬂi;.l.-]'.p[;l],
where ( € O is such that { p% = 1 {mod 2): it belongs to Hy and its conjugates
over K are {Cp~ipn'v(u)dp(u) s u e Ag}.

THEOREM 2. Let p=1 (mod 3) be prime. With the above notation we have

Tro, b)) = P_?L‘.ﬂ;] z viu)Ap(n) = =3 Rp,

wiE Ay

with fp € . The number Hp safisfies
S = H?.._-. and Hs = =Rp,

where 5, 1s the Birch-Suinnerton-Dyer number defined in the introduction.

Remarks. 1. Theorem 2 holds in more generality. For any character ¢ of A let

Rp(¢) =3 olu)rp(u)

e

(a Lagrange resolvent), Then for ¢ of odd order, Rp($)? is essentially the alge-
braic part of L{ipg 2, 1),

2. Tt is possible to define, in a similar way, integers K, associated to any cube-
free ideal A of O such that R = Sy is the Birch-Swinnerton-Dyer number of
the elliptic curve 2% + 3 = N, where N = N(.4). One might hope that these
numbers are the Fourier coefficients of a modular form of some sort.

Theorem 1 is proved by writing the special value L{3yx, 1) as a linear combina-
tion of values of an Eisenstein series as in [4] and using the Shimura reciprocity
law. One then deduces Theorem 2 from a variant of the factorization formula
of [7] and a careful chasing of 24'* roots of unity. Theorems 1 and 2 are easily
seen to be equivalent to the analogous statements given in the introduction.



WHICH PRIMES ARE SUMS OF TWOr T RES? a1

3. Congruences

Our third answer to the question when Sp vanishes was hased on a CONEruence
between S, (which is, up to a factor, the value of a certain L-function at s — 1)
and another number A4, which, as we will discuss in a moment, is (again up to
a factor) a special value of an L-function independent of 7 at some other value
of 5. Congruences of this sort go back to Cauchy, Kummer, and Hurwitz. For
example [1], the class number h{—p) of the quadratic field Qi =p) for a prime
P23, p=3 (mod 4) satisfies Al=p) = -28,., . (mod pl, where (here only!)
B,, denotes the n'" Bernoulli number. One way to interpret this is to say that
the two Dirichlet series

Z(E) n® and Eﬁrl_ln'*.

+|1'_‘] ]

which are congruent term by term modulo p, also have congruent values at
s = 0. Turning this fact into a heuristic argument. we wonld expect that (suitable
algebraic versions of) the values at s = 0 of the Dirichlet series

1 ik — 1
. _— nel — —_—
necﬂzuc:} x{a) Wi ) N{ o) ! uef?m,{m (E‘: J Wik ) N{ex)®
which are easily seen to equal L{uy, 1) and L{w**~' k) respectively, with k—1 —
2(p — 1)/3, should also be comgruent modulo p (see §2 for notations). This is
indeed the case, at least if p=1 (mod 3), where it follows from the existence of
a p-adic L-function interpolating special values of Hecke L-series due to Manin
Vishik and Katz. We now make this precise.
For k € N define the algebraic part of L{y** =1 k) to be

k1

™ =1 :

Ly =3 (3 fﬁﬂi) M—ﬂ—j i =y,
v

where v =2 if k = 2 (mod 6) and v = 1 otherwise. and £ = I(1/3)%*/(2n/3) =
1.766638 - - is the fundamental rea] period of the elliptic curve 2? + 4 = 1.
Then using the formulas of [2] we find that

10 p—1
8, = _3}‘“—%[?}3 }!EL{EP+1];‘3 {mod p),

This corresponds to the “third answer” of the introduction because Lgnyy = A,
for all n, as we will now discyss,

4. Recursions

By the methods of (7] one can obtain formulas for Ly =L k), k € N, in
terms of derivatives of modular forms and then dedyee recursive formulas giving
the algebraic parts L, and similarly for their square roots. A typical formula
for the values is the identity La, ., = A, Just mentioned, but since the results
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for the square roots are more interesting and give more precise information, we
shall state the full results only there (hut see Remark 2 after Theorem 4 below).

The formulas for the square roots of Ly can be divided naturally into three
branches: (a) k = 1 (mod 6), (b) k = 2 (mod 6), and (c) k = 4 (mod 6). (For
other values of k the functional equation forces L{(3** -1, k) to be zero.) For each
branch there is a formula for v L in terms of a higher non-holomorphie derivative
of a fixed half-integral weight modular form at a fixed CM point (e.g. for /L4,
it is the nth non-holomorphic derivative of niz} at the point 2 = &), and this in
turn leads to the following description of the square roots as the constant terms
of a recursively defined sequence of polynomials.

THEOREM 3. Let ar(t], by (1), e0(t) be the polynomials defined by the recur-
2i0NS

pprft) = {1 — Bt a, (1) — (16n + 3)¢° anlt) — dn(2n — 1) feg_q(t),
bupr(t] = (1 =8t b (t) + (16n + 9) ¢ ba(t) —dni(2n+ 1) ¢ b, (1),
Cosllt] = (1 -89 e (#) + (16n + 9] t2 e, (t) —4n(2n + 1) ey (L)

Jorm = 1, with initial conditions
ao(t) = 1, ar{t) = =3¢%, by(t) = 1, by(t) = 9t2, coft) = ¢, c{t) =144
Then for alln € Z.,
| Lont1 = aan (0)7, Lnsa = b3, (0)7, Linya = e300 (0)7,
while aq,(0) = b,,(0) = Cout1(0) = 0 for m £ 0 (mod 3).

We pive a short table. Note that a3n(0) is the B, of the introduction,

T an ['D:] bﬁﬂ{ru} - Cins ED]
() 1 1 1
1 9 & —8
2 - 152 —216 1240
3 —6848 | 119232 —621440
4 | —B103296 | 24105600 | —015H86E00

Remark. The constant terms of the polynomials +.(t) {* = a, b or ¢) satisfy the
cungruences *, i _1y2(0) = (7 4+ 7) %, (0) (mod p) for all n > 1 and all p=1
(mod 3) prime, where 7 denoctes a generator of a prime in & above p with 7 = 1
(mod 3). The corresponding congruence for the squares of the *,, (0] (Le., for the
numbers L) was known, and the possibility of choosing the signs in such a way
that this congruence descends Lo the square roots for all p simultanecusly had
been conjectured by Koblitz [3]. In fact, Koblitz conjectured the existence of
a p-adic L-function interpolating suitable modifications of the presumed square
roats. This has been proved by Sofer [B] in other similar cases (see also [6]).
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There is another way of obtaining the numbers . (0], b, (0) and e,(0) directly
in terms of generating series.

THEOREM 4. (1) Let u(t) = Fli. 53 and vir) =7 Fﬁ 237, where
F'= 2 Fy is Gauss’s hypergeometric function. Let

halm) = u(r) 21— )30 hy(r) = halm ' ho(r) = Ly hy(r)
and define
Hulz) = ha(7),  Hylz) = hy(7), H.(z)= he(T),

where 2 = v/2u = J(r + {rf + 8,7 4 e ) Then

= S (o} — L ) — nr
H. () 2{ 1) ay (0) . Hbl;;},_g”a,,{inw }L_.L]_uzﬂcn[ﬂjﬂ!.

(2) The series H,(x) is the expansion of nlz) aboul w = {~14+/=3)/2 in the
Jollowing sense:

“. - J'JJ_%T} (bjl_il) =C1.H,1|:C‘1T_:' “'Tl < ]-]

where ¢) = flw) = ¢ % [ﬂiﬂfﬂﬂ}'& and co = =33 07 Mdr with O as in 52

Remarks. 1. As a corollary of the identity H, (r; = H,(z)? we obtain sorne-
what surprising polynomial relations between the =qquare roots of the L-values
{Ltny1) and {Lan+2}. Analogous identities also hold for ether OM curves, link-
ing L-values of one curve to L-values of its twist by Q/ v=3)/Q; ultimately they
boil down to classical Jacobi identity #(0) = 2wn?,

2. We briefly state here the power series expansions involving the L, them-
selves. With the notation of Theorem 4 let Golz) = u(r) and G(z) = Tu(7).
Then 2—7 "E:,“:'[ﬂjl equals un”[ﬂjﬂ ifn=0 (mod6), ¢, _ .;,,EQD]? ifn =3 (mod 6)
and () otherwise; 2"‘{3'5“:' (0) equals by, y,2(0)2 if 5 = 1 {mod 6) and zero oth-
erwise. We may even separate the two branches (a) and (b} in Gg by considering
the series w({7){14+(1 —szf}. It is presumably possible to prove directly that the
series Mo, Hy, H., Gy and @ have their Taylor coefficients related as indicated,
but we have not done so.

Proof (sketch). Part 1) of the theorem follows from part 2) and the interpre-
tation of the constant terms a,(0), bn (0}, €a(0) as non-holomorphic derivatives
of holomorphic modular forms, together with the general fact that the expansion
of any modular form as a power series in a modular function satisfies a linear
differential equation. (Classical examples of this latter assertion are the expan-
sion of 5 or E} as a power series in 1 /7 or of 8 as a power series in A, all
of which involve hypergeometric functions.) It can also be proved directly from
the recursive definitions of the polynomials a,, b, and ¢, without ANV a Priori
knowledge that modular forms are involved.
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Part 2) is a consequence of the following simple result about non-holomorphic
derivatives. We recall their definition. For any k € R we let 9, be the differential
operator Ea: + ﬁ acting on functions f of z = x 4+ 1y € H. It has the property

(M2 by = O flr), (v € Sl(R)),

where |, has the usual meaning. In particular, if f is a modular form of weight
k on some group I' © Sla(R), then &} f, where 9] = 9,0 0200, iz a
(non-holomorphic) modular form of weight k + 2n on the same group.

ProprosiTioNn 1. Let f . H — C be an analytic funtion and zo = 2y 4+t a
point in H. Then the following erpansion holds

5 010 2 = (- w)hy (B22) Gl <)

1 —w
o=

Proof. It is easy to check by induction that

I i _ j+1+k—]— 1 i..rhtl[zlr}
st = 3 (71 )(myu) Fa

a+i=n
Hence,
wrpo N 2Zimow)® = f920) . jHE+k—1Y
Zﬂkﬂ"’“)T = Z I (Eiﬂuwjjz i w',
r=i 32 [

and our claim follows from Taylor's and the binomial theorems.

Remark. Notice that the substitution ¢(t) = (zp—Znt)/(1—1) is an isomorphism
from M to the unit disk sending z; to 0, with inverse ¢~ (z) = {z — z0) /({2 — 3g).
The proposition then says that the non-holomorphic derivatives o} f(z;) are
essentially the Taylor coefficients of f|p¢ at £ =0,

5. Estimates of 5,

The last two criteria for the vanishing of S, described in the introduction are
given in terms of the vanishing of 5, (mod p). That these two statements are in
fact equivalent is a consequence of the following general estimate.

ProrosiTION 2. Let E/Q be a modular elliptic curve of conductor N. Then

. VN
|L{E,1)] < (4N)H3 |[1=:JgE + ) + oo,

where - = 0.577 ... is Fuler's constant and o = (1) = 2.13263 .. ..
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Proof. Because of the universal estimate |a,,| < \/rReg(n) for the coefficients of
L{E, s) we have

o
. _ An  _2enfVN 2w
2 1) = E il < 2F(—),
|L”'1 }| ‘“"‘“’} Zn = ' = [JEF}
S p—

where w = *1 is the sign in the functional equation and F(x) = ¥

n=1 "-'"I'H

Using the fact that the Mellin transform of F(z) is I'(s)((s + 3)%, we find the
asymptotic expansion

F{w}=\/£{lﬂg$+w}+2cn:“ (z ™, 0)

rie=1
with ¢y = ((5)* and ¢ = ~¢{(—1) < 0. Some numerical work shows that
Pons=1 ™ < 0 for all x = 0. (For the proposition, we need this only for

T < 2r/v11.)
Applying this to the curve E;,, whose conductor is 27p%, we find after a simple
calculation the following estimate.

COROLLARY. For p=1 (mod 9) we have
15,] < 0.61p%logp .
f'n particular, 5, is determined by its value modulo p and
S5, =0 (modp) <= §,=0.

Remark. We can also estimate S, using Theorems 1 or 2. For instance, from
Theorem 2 and the estimate T;{%} = O(p'/*), we obtain Bp = O(p*'*), sa
that Rp, and hence S, is determined by its value modulo p. The corresponding
estimate using Theorem 1 is more difficult, because © is not a cusp form, but
seems Lo lead to the estimate S, = OQ(p*/%+¢), essentially the same as in the
Corollary above. Note that to determine S, from its value modulo p we need
only the weaker estimate S, < p?/4, since we know that Sy is a square.

BEFERENCES

1. A. Hurwitz, Klassenzahl bindrer guadratischer Formen von negativer Determinante, Acta
Math. 19 ({18595), 351-384. Mathematische Werke, Bd. I1, Birkhiuser-Verlag, Basel-
Stuttgart, 1963, pp. 208-235.

2. N. M. Katz, p-adic interpolation of real analytic Fisenstein series, Ann. of Math, 104
(1976), 450-571.

3. N. Kaoblitz, p-adic congruences and modular formas af half-integral weight, Math, Ann. 274
(1986}, 191-220.

4. F. Rodriguez Villegas, On the square root of special values of certain L-series, Invent.
math. 106 (199]1), 549-573. ' :

Dy Square oot formulas for central values af Hecke L-series II, Duke Math. J. 72
(1093), 431-440.



i FERNANDO RODRIGUEZ VILLEGAS AND DON ZAGIER

11,

« On the Taylor coefficients of theta functions of CM elliptic curves, Arithmetic
Geometry (N. Childress and J. W, Jones, eds ), Contemporary Mathematics 174, 185201
Amer. Math. Soc., 1994,

k. Rodriguez Villegas and D. Zagler, Square roots of central values of Hecke L-series,
Advances in Number Theory, (F. Q. Gouvéa and N, Yui, eds.}), Clarendon Press, Oxfard.
1993, pp. 81-99,

A. Sofer, p-adic interpolation of dquare roots of central values of Hecke L-funetions,
Fh.D. Thesis, The Ohio State University, 1993,

’

- 5. Sylvester, (n the equation in numbers Ax? + By 4 0 = Dryr, and it gssociate

system of equations, Philosophical Magazine 31 (1847), 253296, Mathematical Papers,
Vol. 1, Chelsea. New York, 1973, pp. 110-113,

D Zagier and Kramarz, Numerigal miestigations related to the L-series af cettam
elliptic curves, J. Ind. Math. Soc, 52 (1987), 51-64.

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY. PRINCETON, N R34, ['54
E-mail address: villegas@math. princeton_edy

MaX-PLANCK-INSTITUT FilR MATHEMATIE, G.-CLAREN-STR. 26, 53225 Bownn, GERMANY
E-mail address: zagier@mpim-bonn.mpg.de



