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For a quiver Q with underlying graph Γ, we take M an associated toric Nakajima
quiver variety. In this article, we give a direct relation between a specialization of the
Tutte polynomial of Γ, the Kac polynomial of Q and the Poincaré polynomial of M.
We do this by giving a cell decomposition of M indexed by spanning trees of Γ and
‘geometrizing’ the deletion and contraction operators on graphs. These relations
have been previously established in Hausel–Sturmfels [6] and Crawley-Boevey–Van
den Bergh [3], however the methods here are more hands-on.

1. Introduction

The Tutte polynomial packs a number of fundamental numerical graph invariants
into a two-variable polynomial. It features heavily in modern graph theory and
illuminates connections between it and other fields. Here we give a direct geometric
argument relating it to important polynomial invariants in representation theory
and geometry. We start by introducing our polynomials of interest and their mutual
connections.

The Tutte polynomial of a graph Γ with edge set E and vertex set V is given by:

TΓ(x, y) =
∑

D⊂E
(x− 1)k(D)−k(E)(y − 1)k(D)+#D−#V ,

where k(D) denotes the number of connected components of the subgraph of Γ
with edge set D. Tutte showed that TΓ has non-negative integer coefficients by
expressing it as a sum over spanning trees T ⊂ Γ as follows:

TΓ(x, y) =
∑
T

xint(Γ,T )yext(Γ,T ),
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where int(Γ, T ) and ext(Γ, T ) are integral weights attached to a spanning tree
T ⊂ Γ that depend on a fixed ordering of the set of edges E. Here we will only
consider the specialization TΓ(1, q) and assume Γ is connected, for which the two
formulas above simplify respectively to

TΓ(1, q) =
∑

D⊂E connected

(q − 1)1+#D−#V , (1.1)

TΓ(1, q) =
∑
T

qext(Γ,T ). (1.2)

The sum in (1.1) is over subsets D ⊂ E for which the subgraph of Γ with edges D
is connected.

On the other hand, when the edges Γ are given an orientation, we may consider
the indecomposable representations of the corresponding quiver Q. The polynomial
counting the number of indecomposable representations of Q over Fq of dimension
vector v is called the Kac polynomial ; we will use Av(q) to denote it. Throughout
the introduction we will fix v to be (1, . . . , 1) and call representations with this
dimension vector toric representations. It is easy to deduce from (1.1) (see [6]) that
the Kac polynomial satisfies

Av(q) = TΓ(1, q).

So it is natural to ask for an interpretation of (1.2) in terms of the Kac polynomial.
Last but not least, is the Poincaré polynomial of the Nakajima quiver variety

M := Mλ,θ(v) with v as above and (λ, θ) generic hyperkähler parameters, where
λ ∈ kQ0 and θ ∈ R

Q0 . Definition 2.1 spells out what we mean by generic. According
to general theory developed in [3], the Kac polynomial equals the Poincaré poly-
nomial of the associated Nakajima quiver variety M up to a power of q. The proof
however uses deep geometric arguments, and in particular does not produce a direct
interpretation of the formula (1.2).

In this work, we directly connect both the Kac polynomial and the Poincaré
polynomial of the Nakajima variety to the Tutte polynomial using the formula
(1.2). More precisely, given an ordering on E, we show that spanning trees of
Γ naturally index both subsets of indecomposable representations of Q and cells
in a cell decomposition of M. For each tree T , the number of indecomposable
representations ofQ in the corresponding subset is qext(Γ,T ), while the corresponding
cell MT ⊂ M is isomorphic to A

b1(Q)+ext(Γ,T )
k . See equations (1.3) and (2.1) for

definitions of ext(Γ, T ) and b1(Q), respectively.
The Nakajima quiver variety M parametrizes stable representations of the double

quiver associated with Q, which for every edge e of Q contains the opposite edge e∗.
By forgetting the maps attached to the new edges e∗, each point of M produces a
representation of Q. So one can try to construct a cell decomposition of M in such
a way that a point of M belongs to the cell indexed by a particular tree T precisely
when the corresponding representation of Q belongs to the subset labelled by T .
This idea does produce a nice cell decomposition in the case θ = 0 and λ is generic.
However, as soon as λ = 0 and a non-trivial stability condition θ is involved, this
naive approach does not work; for instance, the corresponding representation of Q
may fail to be indecomposable. So we need a more subtle construction.
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Our proof goes through ‘geometrizing’ the deletion/contraction operators on
graphs and spanning trees. The external activity of a spanning tree T may be
expressed using a deletion/contraction recursion as follows: fix an ordering on E,
for e ∈ E the biggest non-loop edge we have:

ext(Γ, T ) =

{
ext( Γ\e, T ) if e /∈ T

ext( Γ/e, T/e ) if e ∈ T.
(1.3)

The base case is when Γ has exactly one vertex, we then set ext(Γ, T ) = #E. This
expression of ext(Γ, T ) has its roots in the beautifully efficient expression of the
Tutte polynomial through a deletion/contraction recursion. For a good introduction
to the Tutte polynomial from this perspective the reader may consult [1].

To ‘geometrize’ we begin by indexing points of p ∈ M by trees. This indexing
process is somewhat delicate: we use the stability parameter θ ∈ R

Q0 to orient a
given spanning tree and give an algorithm that would pick the ‘biggest’ amongst
those whose oriented arrows are non-zero in p. One of the subtleties here is that θ
may orient a given edge e of Q in one direction when e is viewed as an edge of a
spanning tree T , while orienting it in the opposite direction when e is seen as an
edge of a different spanning tree T ′. Furthermore, the partial ordering in which the
tree assigned to p is the ‘biggest’ is not the lexicographic ordering induced by the
ordering on the edges of Γ. See § 5 for an example in which both of these subtleties
are displayed.

This indexing process gives a cell decomposition of M. We then define dele-
tion/contraction operators on the tree-indexed cells of M to yield isomorphisms:

MT �
{

(M\e )T × A
1
k if e /∈ T

(M/e )T/e if e ∈ T.

This is the content of our main theorems, theorems 4.16 and 4.18. The base case is
again one where our quiver has one vertex, in that case M = A

2(#Q1)
k .

The number of times the contraction operator is used to get to the base case is
#Q0 − 1. Therefore the number of times deletion is used to get to the base case is
#Q1 − (#Q0 − 1) − ext(Γ, T ). This may be written as b1(Q) − ext(Γ, T ). We then
have that

MT � A
2 ext(Γ,T )
k × A

b1(Q)−ext(Γ,T )
k � A

b1(Q)+ext(Γ,T )
k .

Hence we have the following expression for the Poincaré polynomial of M:

PM(q) = qb1(Q) · TQ(1, q).

This is restated in corollary 4.20.
The contents of this article are organized as follows. We start by setting up the

notation and relevant background in § 2. We then go on to framing the classical
results relating the Tutte polynomial and Kac polynomial in our context in § 3. In
§ 4, we address the main content of this work; we define a cell decomposition of M
indexed by trees and use it to relate the Poincaré polynomial of M to the Tutte
polynomial. We finish off with a worked example in § 5.
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2. Background and notation

2.1. Quivers

A quiver Q is specified by two finite sets Q0 and Q1 together with two maps
h, t : Q1 → Q0. We call the elements of these sets vertices and edges, respectively.
The maps h and t indicate the vertices at the head and tail of each edge. A non-
trivial path in Q is a sequence of edges p = e1 · · · em with h(ek) = t(ek+1) for 1 �
k < m. We set t(p) = t(e1) and h(p) = h(em). For each i ∈ Q0 we have a trivial path
ei where t(ei) = h(ei) = i. The path algebra kQ is the k-algebra whose underlying
k-vector space has a basis consisting of paths inQ; the product of two basis elements
equals the basis element defined by concatenation of the paths if possible or zero
otherwise. A cycle is a path p in which t(p) = h(p). From now on and for simplicity,
we will assume that Q is connected. A spanning tree T is a connected subquiver
that contains all the vertices with the minimal number of edges #Q0 − 1. The first
Betti number of a quiver is given by

b1(Q) := #Q1 − #Q0 + 1. (2.1)

For a commutative ring R, the R-module of functions Q0 → R will be denoted
RQ0 . The double quiver Q associated to Q is the quiver given by adjoining an
extra edge of the opposite orientation for each edge e ∈ Q1, that is Q0 = Q and
Q1 = Q1 ∪ (Qop)1. The edge of Q corresponding to the opposite of e ∈ Q1 will be
called e∗.

Given a non-loop edge e ∈ Q1 we define the contracted quiver Q/e as follows. The
vertices are given by (Q/e)0 = (Q0 \ {t(e), h(e)}) ∪ {ι} and the edges by (Q/e)1 =
Q1 \ {e}. Let α be the inclusion (Q/e)1 in Q1 and β be the natural map β : Q0 →
(Q/e)0 taking both t(e), h(e) to ι. The head and tail maps h′, t′ : (Q/e)1 → (Q/e)0
are given by pre-composing h, t onQ with α and post-composing with β. A spanning
tree T ⊂ Q naturally defines a spanning tree T/e of Q/e for any given edge e ∈
T . Furthermore, given an element λ ∈ kQ0 , we define λ/e ∈ k(Q/e)0 to take the
value λ(i) at i ∈ (Q/e)0 \ {ι} and (λ/e)(ι) := λ(h(e)) + λ(t(e)). Given θ ∈ R

Q0 we
define θ/e ∈ R

Q/e0 in a similar fashion. We will drop the contraction notation ‘/e’
from subquivers, subtrees, kQ0 , R

Q0 and their corresponding elements when the
contraction is clear from the context. For e ∈ Q1, we will use the notation Q\e to
denote the quiver Q with the edge e deleted.

A representation x = (Vi, xe) of Q consists of a vector space Vi for each i ∈ Q0

and a linear map xe : Vt(e) → Vh(e) for each e ∈ Q1. A map between representations
x = (Vi, xe) and x′ = (V ′

i , x
′
e) is a family ξi : Vi → V ′

i for i ∈ Q0 of linear maps
that are compatible with the structure maps, that is x′e ◦ ξt(e) = ξh(e) ◦ xe for all
e ∈ Q1. With composition defined componentwise, we obtain the abelian category
of representations of Q denoted Repk(Q). This category is equivalent to the cat-
egory kQ-Mod of left modules over the path algebra. We are interested in finite
dimensional representations of Q, i.e. x = (Vi, xe) for which dimVi is finite. The
dimension vector of x is the integer vector (dimVi)i∈Q0 .

Given a dimension vector v, a θ ∈ Z
Q0 for which v · θ = 0 defines a stabil-

ity notion for representations of Q with dimension vector v. A representation x
is θ-semistable if, for every proper, non-zero subrepresentation x′ ⊂ x, we have
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i∈Q0

θi · dim(V ′
i ) � 0. The notion of θ-stability is obtained by replacing � with

>. For a given dimension vector v = (vi)i∈Q0 ∈ Z
Q0 , a family of θ-semistable quiver

representations over a connected scheme S is a collection of rank vi locally free
sheaves Vi on S together with morphisms Vt(e) → Vh(e) for every e ∈ Q1. When
every θ-semistable representation is θ-stable and the dimension vector is primitive
(not a positive scalar multiple of another dimension vector) this moduli problem is
representable by a scheme Mθ(Q, v), see proposition 5.3 in [8]. The reader may also
consult § 4 of [2] for a more comprehensive introduction to quiver representations
as viewed here.

2.2. Nakajima quiver varieties

A more detailed introduction to the ideas below may be found in Ginzburg [4]
and Kuznetsov [9].

Suppose we are given a quiver Q and a dimension vector v ∈ Z
Q0 . Pick two fur-

ther vectors λ ∈ kQ0 , θ ∈ R
Q0 called the hyperkähler parameters. The hyperkähler

parameters are required to satisfy v · θ = 0, v · λ = 0. Take Vi to be a vector space
of dimension vi for each i ∈ Q0. We will use R(Q) to denote the space

R(Q) =
⊕
e∈Q1

(
Hom(Vt(e), Vh(e)) ⊕ Hom(Vh(e), Vt(e))

)
.

A point in R(Q) defines a representation of Q with dimension vector v. The vector
space R(Q) has a natural symplectic structure: it is the cotangent space of⊕

e∈Q1

Hom(Vt(e), Vh(e)).

Change of basis gives a Hamiltonian group action of Gv := ⊕i∈Q0 GL(Vi) on R(Q).
This induces a moment map μ : R(Q) → g∗v given by

(x,x∗)(z) 	→ Tr ([x,x∗] z).

An element λ ∈ kQ0 gives an element of g∗v taking (xi)i∈Q0 to
∑

i∈Q0
λi · Trxi. The

set of such elements defines a subset kQ0 ⊂ g∗v which coincides with the fixed point
set of the coadjoint action of Gv on g∗v. For λ ∈ kQ0 ⊂ g∗v the closed subset μ−1(λ)
is given by (x, x∗) ∈ R(Q) that satisfy the following equations∑

{e∈Q1 : h(e)=i}
xex

∗
e −

∑
{e∈Q1 : t(e)=i}

x∗exe = λi IdVi
i ∈ Q0. (2.2)

Applying trace to both sides of (2.2) and summing over all i, we see that for these
equations to have a solution it is necessary that v · λ = 0.

Let Gm be the multiplicative group diagonally embedded in Gv. Since Gm acts
trivially on R(Q), we have an action of Gv/Gm on R(Q). The stability parameter
θ ∈ R

Q0 , because of the condition v · λ = 0, defines a GIT stability condition for this
action. GIT stability is equivalent to a more intrinsic King-like stability condition.
A point (x, x∗) ∈ R(Q) is θ-semistable with respect to the Gv/Gm-action on R(Q)
if and only if the quiver representation of Q given by (Vi, x, x∗) is θ-semistable. We
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will use R(Q)θ to denote the θ-semistable points in R(Q). The Nakajima quiver
variety corresponding to the above data is then

Mλ,θ(v) := μ−1(λ)//θGv.

Under the genericity conditions on θ discussed in remark 2.3, this is the geometric
quotient parametrizing Gv-orbits of μ−1(λ) ∩ R(Q)θ. The closed subset μ−1(λ) ⊂
R(Q) will be denoted by Zλ to lighten the notation.

We assume that the pair (λ, θ) is generic in the following sense:

Definition 2.1. The parameter λ ∈ kQ0 is generic if for all v′ ∈ Z
Q0 satisfying

0 � v′
i � vi for all i ∈ Q0 we have that v′ · λ = 0 implies v′ = v or v′ = 0. Similarly,

the parameter θ ∈ R
Q0 is generic if for all v′ ∈ Z

Q0 satisfying 0 � v′
i � vi for all

i ∈ Q0 we have that v′ · θ = 0 implies v′ = v or v′ = 0. We say the pair (λ, θ) is
generic if either λ is generic or θ is generic.

We will assume throughout that v = (1, . . . , 1) and drop v from the notation.

Remark 2.2. There is a version of Nakajima quiver varieties which involves framing
and that further depends on a second dimension vector w ∈ Z

Q0 . However, by
Crawley-Boevey’s trick explained on p. 11 in [4], these varieties are isomorphic to
the varieties without framing for the quiver obtained from Q by adding a single
new vertex ∞ with dimension 1 and wi edges from ∞ to i for each i ∈ Q0. Hence
our results apply to the case of framed Nakajima varieties for v = (1, . . . , 1) and
w arbitrary.

Remark 2.3. If the pair (λ, θ) is generic, but θ alone happens to be non-generic,
one can perturb θ without changing the set of semistable points to make θ generic.
So we will assume throughout that θ is generic. This guarantees that any semistable
point of Mλ,θ(v) is stable, so the GIT quotient above is a nice quotient and the
Nakajima variety is smooth.

3. Counting indecomposable representations

The content of this section is classical, see § 7 of [5] for example. We restate the
results using our notation for context.

Fix a quiver Q. We will often abuse notation using Q to denote the underlying
graph of the quiver when the need for a graph is clear from the context. The aim in
this section is to count indecomposable representations of Q over Fq with dimension
vector v := (1, . . . , 1).

Definition 3.1. Given a representation x = (Vi, xe) of Q, let

D := {e ∈ Q1|xe is not an isomorphism}.
The inversion graph Kx of x is the subgraph Q\D.

Lemma 3.2. A representation x is indecomposable if and only if its inversion graph
Kx is connected.
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Given lemma 3.2, we can assume our quiver Q is connected. We define the exter-
nal activity of a given spanning tree T ⊂ Q in a recursive fashion and denote it
ext(Q, T ). To do so we require an ordering on the non-loop edges in Q1. Fix one
once and for all. Let e ∈ Q1 be the biggest non-loop edge in our ordering. Then

ext(Q,T ) =

{
ext(Q\e, T ) if e /∈ T

ext(Q/e, T/e) if e ∈ T.

When #Q0 = 1 we set ext(Q, T ) = #Q1. Note that Q\e and Q/e in the above
statement naturally inherit an ordering on their non-loop edges. We will drop the
Q from the notation ext(Q, T ) when the quiver is clear from the context.

One may similarly define internal activity in a recursive fashion: we apply the
recursion to non-bridge edges with the base case being a quiver Q for which every
edge is a bridge and int(T ) = #Q1. We will not spell this out here since we will not
need it.

Proposition 3.3. Given a quiver Q and a spanning tree T ⊂ Q we have that
ext(Q, T ) � b1(Q).

Proof. The number of times the contraction operator is used to get to the base case
is #Q0 − 1. Therefore the number of times deletion is used to get to the base case is
#Q1 − (#Q0 − 1) − ext(T ) = b1(Q) − ext(T ). This is therefore non-negative. �

To count representations, we associate a tree to each representation x as follows.
Let e ∈ Q1 again be the biggest non-loop edge. If e ∈ Kx, we can use the linear
map attached to e to identify Vh(e) with Vt(e). So x corresponds to an indecompos-
able representation x/e of Q/e. The correspondence x ↔ x/e is one-to-one. If on
the other hand e /∈ Kx, we can think of x as an indecomposable representation of
Q\e. Proceeding in this way some edges of Q will be contracted, some edges will
be deleted and some edges will become loops. Let T be the tree formed by the con-
tracted edges. Then the number of loops left at the end of the recursion is ext(T ).
Representations associated to a given tree T are in bijection with representations
of a quiver with one vertex and ext(T ) loops, so their number is qext(T ). We have
proved:

Theorem 3.4. The number of indecomposable representations of Q over Fq is given
by the sum over spanning trees T ⊂ Q below:

Av(q) =
∑
T⊂Q

qext(T ).

Remark 3.5. The external activity of a given tree depends on the ordering we
chose above. However, the statement of theorem 3.4 implies that the number of
indecomposables does not.

The formula (1.2) now relates the Kac polynomial to the Tutte polynomial.

Corollary 3.6. The polynomial Av(q) is equal to the specialization TQ(1, q) of
the Tutte polynomial.
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4. Cell decomposition of the quiver variety

Let M be Mλ,θ(v) as defined in subsection 2.2. We will denote a general point in
M by p = (x, x∗). The aim here is to give a cell decomposition of M, expressing
its class in the Grothendieck ring of varieties in terms of the class of the affine line.
This will be done in a similar recursive fashion to the indecomposable representa-
tions count in § 3. In particular, the count will be over spanning trees and will use
contraction and deletion operators.

4.1. Contraction/deletion

We start by setting up the contraction language for elements of R(Q).

Definition 4.1. For p ∈ R(Q), let

D := {e ∈ Q1|xe and x∗e are not isomorphisms}.
The inversion graph Kp ⊂ Q of p is then Q\D.

Take p ∈ R(Q) and assume e ∈ Kp is not a loop. Without loss of generality
we take xe to be the isomorphism. We define a point p/e in R(Q/e) using the
following recipe. Set the vector space at the new vertex ι to be the graph of xe, i.e.
Vι := {(v, xe(v)) ∈ Vt(e) ⊕ Vh(e)|v ∈ Vt(e)}. Vector spaces at other vertices remain
unchanged. The vector space Vι is naturally isomorphic to both Vt(e) and Vh(e). We
use these isomorphisms to associate linear maps xe′ and x∗e′ for every e′ ∈ (Q/e)1
whose corresponding edge in Q is incident to either t(e) or h(e). Linear maps for
the other edges are clear.

The following lemmas confirm that the contraction of p behaves well with respect
to the hyperkähler parameters (λ, θ).

Lemma 4.2. Take e ∈ Kp not a loop. If p ∈ Zλ then p/e ∈ (Z/e)(λ/e).

Proof. We should check equations (2.2) for Q/e. The only non-trivial check is at
the vertex ι. Without loss of generality, assume xe is the isomorphism. First conju-
gate the equation corresponding to t(e) with the isomorphism Vt(e) → Vι and that
corresponding to h(e) with the isomorphism Vι → Vh(e). Taking the sum of the
conjugates kills off the term corresponding to e and the result follows. �

Lemma 4.3. Take e ∈ Kp not a loop. If p ∈ R(Q) is θ-stable then p/e ∈ R(Q/e)
is (θ/e)-stable.

Proof. It is easier to see the contrapositive. Assume p/e is (θ/e)-unstable. Let
q/e ⊂ p/e be a destabilizing submodule. To lift q/e to R(Q) it suffices to specify
the vector spaces at t(e) and h(e). We take them to be Vt(e) and Vh(e) respectively,
if the vector space defined by q/e at ι is full dimensional. If the vector space defined
by q/e at ι is 0 we take both of them to be 0. This lift then destabilizes p. �

Remark 4.4. There is an ambiguity in the above construction if both xe, x∗e are
isomorphisms. However, in that case, both choices give equivalent representations
and they will descend to the same point in M.
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The deletion operation is easier to define. Take a point p ∈ R(Q) and any edge
e ∈ Q. Ignoring the linear maps xe and x∗e gives a representation p\e ∈ R(Q\e). If
either xe = 0 or x∗e = 0 then p ∈ Zλ implies p\e ∈ (Z\e)λ. Observe that θ-stability
is not always preserved under this operation. To summarize, for θ-stable p ∈ Zλ

and edge e ∈ Q we have the following cases:

(1) Both xe and x∗e are non-zero. We can contract e using xe or x∗e and obtain a
θ/e-stable representation.

(2) Exactly one out of xe, x∗e is non-zero. Suppose xe = 0. We can contract e using
xe or delete e. Contraction will always produce a θ/e-stable representation,
but deletion sometimes destroys stability.

(3) Both xe and x∗e are zero. Deleting e produces a θ\e-stable representation.

These observations are the ideas behind notation 4.14 below. Before we get there,
we address spanning trees in the Nakajima quiver varieties setting.

Lemma 4.5. Take θ ∈ R
Q0 : if p ∈ R(Q) is θ-stable then Kp is connected.

Proof. AssumeKp is not connected. Choose a connected component and let J ⊂ Q0

be the vertices of this component. Let δ be the indicator function for J ⊂ Q0,
then elements (tδ(i) · 1i)i∈Q0 ∈ Gv stabilize x for any t ∈ Gm. This gives a positive
dimensional stabilizer subgroup and contradicts θ-stability. One may also see the
lemma by decomposing the corresponding quiver representation into two direct
summands and using King stability. �

4.2. Stability and trees

In a spanning tree T ⊂ Q, every edge e ∈ T splits T into two connected compo-
nents; call them Tt(e) and Th(e). If

∑
i∈Tt(e)

θi <
∑

j∈Th(e)
θj we take e to be oriented

as in Q. If
∑

j∈Th(e)
θi <

∑
i∈Tt(e)

θj we take e to be reverse oriented. We may then

view T as a subquiver of the double quiver Q.
This orientation may be equivalently defined in slightly different language. Let

R
Q1 be the vector space of functions Q1 → R and, for e ∈ Q1, χe be the indicator

function of e. Similarly define χv ∈ R
Q0 for v ∈ Q0. The incidence homomorphism

inc: R
Q1 → R

Q0 is defined by χe 	→ χh(e) − χt(e). The image of inc is the hyperplane
Θ := {θ ∈ R

Q0 : θ · v = 0} ⊂ R
Q0 . The inc-images of the edges of a spanning tree of

T ⊂ Q define a basis of Θ. That is, a spanning tree decomposes the stability space
Θ into 2|Q0|−1 simplicial cones. A generic stability parameter θ lies in precisely one
of these cones. The cone to which θ belongs then defines an orientation on our
spanning tree T . The discussion above inspires the following definitions.

Notation 4.6. Fix θ ∈ R
Q0 a generic stability parameter and let T be a spanning

tree of Q. We will write T θ for the oriented spanning tree of Q defined by the
θ-induced orientation.
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Define the weight of e ∈ T θ by

θe,T =
∑

j∈Th(e)

θj > 0.

It is not hard to check the identity

inc

⎛⎝ ∑
e∈T θ

θe,T χe

⎞⎠ = θ.

Lemma 4.7 (Orientation is preserved under contraction). Fix θ ∈ R
Q0 a generic

stability parameter and let T be a spanning tree of Q. For e ∈ T θ, we have that
(T θ)/e ⊂ (Q/e) is the θ/e-oriented spanning tree of the spanning tree T/e ⊂ Q/e.
Here we abuse notation and refer to the edge in Q and a corresponding edge in Q
by the same symbol e. Moreover, we have θe′,T = (θ/e)e′,T/e for each edge e′ ∈ T
different from e.

Proof. Straightforward. �

Definition 4.8. Take p ∈ R(Q). Let Kp be the double quiver associated to the
inversion graph Kp and

D := {e ∈ Q1|xe is not an isomorphism}.
The oriented inversion graph Ko

p ⊂ Kp ⊂ Q of p is then Q\D.

Lemma 4.9. Let θ ∈ R
Q0 be a generic stability parameter and take p ∈ R(Q). The

point p is θ-stable if and only if there exists a subtree T ⊂ Q such that T θ ⊂ Ko
p.

Proof. Assume p is θ-stable and that a spanning tree T ⊂ Q for which T θ ⊂ Ko
p

does not exist. Take a tree T ⊂ Kp. We say an edge e ∈ T θ is faulty if e /∈ Ko
p. Pick

a faulty edge e. Let Qt(e) and Qh(e) be the subsets of Q0 formed by the vertices of
Tt(e) and Th(e) respectively. We may assume that there are no arrows a ∈ Q1 from
Qt(e) to Qh(e) whose corresponding linear map xa is an isomorphism, otherwise
we replace e with a and get a tree with one less faulty arrow. Setting Ui := Vi for
i ∈ (Qt(e))0 and Ui := 0 for i ∈ (Qh(e))0 defines a destabilizing subrepresentation
(Ui, ye) of p.

Now assume p is unstable and T as above exists. Without loss of generality we
can assume that all the arrows outside of T θ are zero. Let q be a destabilizing
subrepresentation. If q is decomposable then one of its direct summands is also
destabilizing. So we can assume that q is indecomposable, which means that the
subgraph K of T θ formed by the vertices where q is not zero is connected. The
complement T θ \K does not have to be connected, denote its connected compo-
nents by K1, . . . , Km. We have that there is precisely one edge in T θ from Ki to
K for each i and no edges between Ki and Kj for i = j. The decomposition of
T θ \K into connected components corresponds to a decomposition of the quotient
p/q into a direct sum of m representations. One of these direct summands is a
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destabilizing quotient representation, call it r. Suppose it is supported on subgraph
Ki. Set q′ = ker(p → r). We have that q′ is supported on K ′, which is formed by
the vertices of K and Kj for j = i. Now Ki and K ′ decompose the tree T θ into
two parts with a single edge connecting them which goes from Ki to K ′. On the
other hand, since Ki is a destabilizing quotient, we have

∑
v∈Ki

θv > 0 >
∑

v∈K′ θv,
which by the construction of T θ implies that the edge connecting Ki and K ′ must
be oriented from K ′ to Ki, a contradiction. �

We now want to associate a spanning tree to each θ-stable point p ∈ R(Q). The
idea here is to pick the ‘biggest’ spanning tree T for which T θ ⊂ Ko

p. Such T exists
by lemma 4.9 since p is θ-stable. However, this partial ordering in which this tree
is ‘biggest’ is harder to pin down. It is easier to describe it through the smallest
edge. We will need the following notation and lemma.

Notation 4.10. Take p ∈ R(Q)θ, e ∈ Q1 and assume p\e is θ-unstable; here e
should be thought of as the smallest edge in some ordering. Every destabilizing
subrepresentation of p\e must contain either the head or tail of e but not both,
otherwise it would destabilize p. Furthermore, if one destabilizing representation of
p\e contains t(e) then they all must: if two destabilizing subrepresentations were to
contain both t(e) and h(e) respectively, then their sum or their intersection must
be destabilizing too, which leads to a contradiction. Without loss of generality, we
may assume that all destabilizing subrepresentations of p\e contain t(e) and do
not contain h(e). The set of all destabilizing representations, call it D, is finite
and non-empty. Note that this implies that xe is an isomorphism, otherwise any
destabilizing subrepresentation would remain a subrepresentation of Q. We take

βe := min{ θ(q)|q ∈ D}.
We also fix θ′ := θ − βe inc(χe).

Lemma 4.11. Take p ∈ R(Q)θ, e ∈ Q1 and assume p\e is θ-unstable. Fix θ′

as in notation 4.10. The representation p\e is θ′-semistable but not θ′-stable.
Furthermore, p\e is an extension of two θ′-stable representations p1 and p2.

Proof. Take βe and D as in notation 4.10. Minimality of βe gives that elements
of D are positive when paired with θ′ and so no longer destabilizing. It remains
to eliminate the risk of a θ-positive subrepresentation of p\e becoming θ′-non-
positive: if such a subrepresentation was to exist, it would have to contain t(e),
and its intersection or sum with a θ-minimizing element of D would form a θ-non-
positive subrepresentation of p. Strictness of semistability follows since θ′(q) = 0
for a θ-minimizing q ∈ D.

For the second statement observe that there is a unique θ-minimizing subrepresta-
tion in D: if say θ(q1) = θ(q2) = βe for some q1, q2 ∈ D then θ(q1 ∩ q2) + θ(q1 +
q2) = θ(q1) + θ(q2) and minimiality of βe implies

θ(q1 ∩ q2) = θ(q1 + q2) = βe,

which contradicts genericity of θ. Here the intersection and sum of q1 and q2 is
taken in the ambient representation p\e. We take p1 to be this unique θ-minimizing
element of D and p2 to be the quotient representation (p\e)/p1.
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The minimizing property of p1 implies it is θ′-stable. For stability of p2 observe
that any submodule of it corresponds to a submodule of p in such a way that any
destabilizing module of p2 gives a θ-minimizing module of p. �

Remark 4.12. For those well versed in GIT language, lemma 4.11 may be alter-
natively stated as: p is S-equivalent to a θ′-polystable representation with two
components p1 and p2. One may consult the excellent notes on GIT [7] for
definitions of S-equivalence and polystability.

Remark 4.13. It might seem natural to consider the Harder–Narasimhan filtration
of p\e to get a decomposition into smaller representations. This however does not
seem to give the desired results.

As in § 3, we fix an ordering on the edges of Q.

Notation 4.14. Take p ∈ R(Q)θ and let e be the smallest non-loop edge. We define
a tree T associated to p recursively as follows:

(1) If p\e is θ-stable, take e /∈ T . We then consider p\e ∈ R(Q\e).
(2) Otherwise take e ∈ T . We use lemma 4.11 to give us θ′-stable subrepresen-

tations p1 and p2; we then consider them on their corresponding subquivers.
Applying the algorithm for p1 and p2 produces spanning trees in the sub-
quivers, which are then glued together using the edge e to a spanning tree
of Q.

We stop the algorithm when Q has one vertex. We will denote the set of all points
p ∈ R(Q) associated to a given spanning tree T ⊂ Q by R(Q)T . Furthermore, Zθ

λ,T

will be Zλ ∩R(Q)θ
T .

Lemma 4.15. The algorithm defined in notation 4.14 associates a unique tree T to
every θ-stable point p ∈ R(Q). Furthermore, for p ∈ R(Q)T we have that T θ ⊂ Ko

p.

Proof. Existence of T follows from lemma 4.9 and uniqueness follows from the
algorithm in notation 4.14. The last statement follows because in notations used in
lemma 4.11 xe is an isomorphism and θ(p1) = βe is negative, so e is oriented the
same way as in T θ. �

The subsets R(Q)θ
T and Zθ

λ,T are Gv-invariant since θ-stability is a Gv-invariant
property. We will use MT ⊂ M to denote the quotient of Zθ

λ,T by the Gv-action.
For e ∈ Kp a non-loop edge we introduce the notation M/e for the Nakajima

quiver variety on the contracted quiver Q/e with dimension vector v = (1, . . . , 1)
and hyperkähler parameters λ/e and θ/e. We use M\e in an analogous fashion.

Theorem 4.16. Let T be a spanning tree of Q and let e be the biggest non-loop
edge in Q. If e ∈ T then

MT � (M/e)T/e.
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Proof. Without loss of generality we may assume T θ = T . This in particular implies
that xe is an isomorphism. We have a morphism MT → M/e given by p 	→ p/e. In
fact the image of this morphism lies in (M/e)T/e. If we are in case (1) of notation
4.14 on Q, i.e. the smallest edge e′ is such that p\e′ is stable, lemma 4.3 implies that
(p/e)\e′ is also stable. Therefore, when applying the algorithm to p\e we are in case
(1) as well. If we are applying (2), e ∈ T and e being the biggest imply that both
endpoints of e belong to p1 or p2. Hence p1/e is a destabilizing subrepresentation
for (p/e)\e′, and so the corresponding step of the algorithm for p/e produces the
same decomposition of Q0, and we can continue by recursion.

On the other hand, a point of (M/e)T/e lifts to a unique point of M by the
following construction. Take q ∈ (Z/e)θ

λ,T ; the aim is to provide a lift p ∈ Zθ
λ,T .

We start by defining linear maps for every edge in Q. The linear maps associated
to edges not incident to t(e) or h(e) are clear. For all non-e edges incident to t(e)
and h(e), we choose isomorphisms φ : Vt(e) → Vι and ψ : Vι → Vh(e) to unwind their
corresponding linear maps and define xe to be ψ ◦ φ. This choice of φ and ψ will
come out in the wash when we quotient by the action of Gv. The only ambiguity
left is the linear map associated to x∗e. We use the equation corresponding to t(e)
from (2.2) to read off x∗e: post-multiplying the equation by x−1

e reduces the e-term
to x∗e. Up to the choice of isomorphisms φ and ψ, we have a point p ∈ Zλ and since
xe is an isomorphism by construction we have T ⊂ Ko

p which implies p ∈ Zθ
λ by

lemma 4.9.
It remains to show that the tree associated to p is precisely T . Suppose this is

not the case and denote the corresponding tree by T ′ = T . Running the algorithm
for p produces T ′ and running the algorithm for q produces T/e. Let us consider
the first step where the algorithm for p deviates from the algorithm for q and let
e′ be the smallest edge. We consider the following three possibilities.

Suppose e′ /∈ T ′, e′ ∈ T . This means that p\e′ is stable. By lemma 4.3, (p\e′)/e
is also stable, contradicting e′ ∈ T . Now suppose e′ ∈ T ′, e′ /∈ T . Since e′ /∈ T , we
have T ⊂ Ko

p\e′ which implies that p\e′ is stable by lemma 4.9. This contradicts
the fact that e′ ∈ T ′.

The remaining case is: e′ ∈ T , e′ ∈ T ′ while the decomposition of p into p1 and
p2 in (2) of notation 4.14 is different from the corresponding decomposition of q
into q1 and q2. This can only happen if e connects p1 to p2 so that after contraction
of e, p1 fails to be a subrepresentation of q. In this case, we are forced to choose a
subrepresentation of q with higher value of θ, i.e. θ(p1) < θ(q1). We apply the same
trick as used in the proof of lemma 4.9: set all maps of p which are not in T to zero.
Denote the resulting representation by p′ and the subrepresentation corresponding
to p1 by p′

1. Applying our algorithm to p′ produces a tree contained in T , so it
must be T . In particular, the first step of the algorithm produces a subrepresenta-
tion which goes to q1 after contraction of e, so we have θ(q1) � θ(p′

1) = θ(p1), a
contradiction.

It remains to act by Gv to remove the ambiguity of the choice of φ and ψ and
descend to a morphism (M/e)T/e → MT . Checking the constructed morphisms are
mutual inverses is left to the reader. �

Let T be a spanning tree of Q and θ ∈ R
Q0 a generic stability parameter. For

every edge e /∈ T , we let C(T, e) be the unique cycle of the graph obtained by
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adding e to T . Assume e /∈ T and let e = a ∈ C(T, e), the orientation of a ∈ T θ

then defines a direction around C(T, e) and so an orientation on the edge e. We
call this the a-induced orientation on e.

Lemma 4.17. Let θ ∈ R
Q0 be generic, T be a spanning tree of Q, e be the biggest

non-loop edge in Q and p = (x, x∗) ∈ MT . Take e /∈ T and let a be the smallest
edge in C(T, e). Assume the a-induced orientation on e is opposite to its orientation
as an edge of Q then xe = 0, otherwise x∗e = 0.

Proof. We may assume a is the smallest edge of Q, so a ∈ T implies p\a is θ-
unstable. We may further assume that t(e) is in Tt(a) while h(e) is in Th(a). The
algorithm in notation 4.14 gives that the representation supported on the vertices
of Tt(a) is a destabilizing subrepresentation of p\a, therefore xe = 0. �

Theorem 4.18. Let T be a spanning tree of Q and e be the biggest non-loop edge
in Q. If e /∈ T then

MT � (M\e)T × A
1
k.

Proof. We may now adopt a similar strategy to the proof of theorem 4.16. Take
q ∈ (Z\e)θ

λ,T ; the aim is to provide a lift p ∈ Zθ
λ,T . The linear maps associated to

all edges that are not e may be read off from q. To finish defining the lift, it remains
to fix the linear maps xe and x∗e. Lemma 4.17 allows us to assume that xe = 0. For
the other yet undefined linear map we pick an arbitrary q ∈ Hom(Vh(e), Vt(e)) and
set x∗e := q. The equations (2.2) in Zθ

λ,T then follow directly from those in (Z\e)θ
λ,T ;

θ-stability follows from lemma 4.9; analysing cases (1) and (2) we deduce that our
lift lives in Zθ

λ,T . This gives a morphism

(Z\e)θ
λ,T × Hom(Vh(e), Vt(e)) −→ Zθ

λ,T .

After acting by Gv this descends to a morphism (M\e)T × A
1
k −→ MT .

Consider p ∈ MT . By lemma 4.17, we can delete e and obtain a representation q
of Q\e; this is θ-stable by lemma 4.9. The point p is obtained from q by the above
lifting construction for a unique value of q ∈ A

1
k. If T ′ is the tree associated to q,

then T = T ′ follows from the first part of the proof. �

Corollary 4.19. For T ⊂ Q a spanning tree, we have MT � A
b1(Q)+ext(T )
k .

Proof. First we study Mλ,θ(Q, v) when #Q0 = 1. We have λ = 0, so there is an
arbitrary choice of linear maps in End(V0) for every edge of the double quiver Q,
therefore M = A

2(#Q1)
k .

We now let Q be a general quiver. Proposition 3.3 gives that ext(T ) � b1(Q) for
a spanning tree T ⊂ Q. The difference b1(Q) − ext(T ) is precisely the number of
times one uses the deletion operator when reducing Q to a quiver of one vertex in
the recursion computing ext(T ).

Theorems 4.16 and 4.18 along with these two observations give that

MT � A
2 ext(T )
k × A

b1(Q)−ext(T )
k � A

b1(Q)+ext(T )
k .

This completes the proof. �
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Figure 1. The quiver Q and its spanning trees. (a) The quiver Q, (b) Tree Ts, (c) Tree
Tm, (d) Tree Tl.

Corollary 4.20. The Poincaré polynomial of M is given by

PM(q) = qb1(Q) · TQ(1, q).

5. An example: Ã2

We go through the calculations in § 4 in an example. The example is relatively
simple yet it exhibits most of the phenomena of interest.

Our starting quiver Q will be that of the affine Dynkin diagram of type Ã2.
We label the vertices and edges of Q as in figure 1. The figure also contains the
three spanning trees of Q which are given by forgetting one of the three edges.
We pick hyperkähler parameters λ = 0 and θ = (−2, 1, 1), and we order the edges
l > m > s.

Since our dimension vector v is (1, . . . , 1), every representation in M is isomor-
phic to one where the non-zero vector spaces at the vertices are the vector space k.
The linear maps at the arrows are then naturally elements of A

1
k.

Every point in M is equivalent to one of the representations displayed in figure 2.
The division into subfigures also indicates the cell MTi

to which the points belong.
Arrows in blue indicate the corresponding oriented tree Ti

θ ⊂ Q. Note that the
orientation of the biggest edge l (or any edge for that matter) may be different
for different spanning trees. The result displayed in figure 2 gives that #M(Fq) =
q2 + q + q = q2 + 2q.

In figure 3 we go through the algorithm in Notation 4.14 for a given point p ∈ M.
We will indicate the smallest edge using the colour green. The steps in figure 3 give
that the tree Tl labels the point p given there. Note that T θ

m ⊂ Ko
p. We remark

that the algorithm chose Tl even though it is lexicographically smaller than Tm.
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Figure 2. Cell decomposition of M, (a) MTs
: here (q1, q2) ∈ A

2
k, (b) MTm

: here q ∈ A
1
k,

(c) MTl
: here q ∈ A

1
k.

Figure 3. Notation 4.14 algorithm. (a) Our point p. (b) Decomp. θ′ = (−1, 1, 0). (c) The
result.

Figure 4. Cell decomposition of M: different ordering. (a) MTs
: here q ∈ A

1
k, (b) MTm

:

here (q1, q2) ∈ A
2
k, (c) MTl

: here q ∈ A
1
k.

We now change the ordering so that s > l > m and examine the decomposition of
M into cells indexed by spanning trees under this ordering. This cell decomposition
is displayed in figure 4.

The decompositions displayed in figures 2 and 4 show that a fixed representation
may be labelled by different trees for different orderings. However, they both give
decompositions M = A

2
k � A

1
k � A

1
k.
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