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1 Introduction

Our main goal is to prove an explicit formula for the square root of the value at
s =1 of L-series associated to particular Hecke characters of an imaginary quad-
ratic field K. In this paper we will prove the formula when the discriminant of K is
a prime p = 7mod 8; the case of general discriminant, as well as quadratic twists,
will be treated in a subsequent paper.

We will then apply this result to study the value at s = 1 of the L-series of the
elliptic curve A(p), studied by Gross in [4], when p = 7 mod 8. In this case A(p) has
rank zero and so by the Birch-Swinnerton Dyer conjectures the L-series at s = 1
divided by appropriate factors should equal the order of the Tate-Shafarevich
group of the curve. We will call this conjectural order the predicted order of the
Tate-Shafarevich group. Using our main formula we obtain an explicit nonzero
rational integer &(p) whose square is the predicted order of the Tate-Shafarevich
group of A(p).

The formula for & (p) provides an effective way of computing this predicted
order. It also includes an intriguing choice of sign. We should recall that if the order
of the Tate-Shafarevich group is finite it is known to be a square.

There are two key ingredients in the proof of the main formula. First, a formula
of Hecke expressing the partial L-series at s = 1 as a sum of values of binary theta
functions. This, in fact, is a consequence of Kronecker’s limit formulas. Second,
a factorization lemma which shows that for certain points in the upper-half plane,
the values of the binary theta functions factor, essentially, as the product of values
of Jacobi theta functions. Roughly speaking, this factorization exhibits the L-series
ats = 1 as a sum of h? terms (here his the class number of K), each a product of two
factors out of a set of h. This then equals the square of the sum of the h factors.

For the application to A(p) we use the Shimura reciprocity law to get algebraic
and Galois properties of the terms involved. A further argument is needed to show

* Partial support for the writing of this paper was provided by NSF grant DMS-8610730
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that a possible denominator of 2"~ ! actually divides the numerator, proving
integrality.

Hecke’s formula is given in Sect. 2 and the factorization lemma in Sect. 3. We
obtain the algebraic and Galois properties mentioned above in Sects. 4 and 5 and
the main formula in Sect. 6. Finally, we apply all this to the curve A(p) in Sects.
7 and 8. In Sect. 9 we give the values of ¥ (p) for primes p = 7mod 8 less than 3000.

We should stress that results of the type presented here also follow from the
work of J.P. Waldspurger; see [18] and [19]. We should also point out that the
factorization lemma mentioned above follows, in a special case, from a somewhat
neglected result of Kronecker (see [8, vol. IV, pp. 354-357]). That the Tate-
Shafarevich group is finite is now known for a family of elliptic curves; see [7] and
[12].

We have programmed our formula in Kida’s language Ubasic, which allows
fast arbitrary precision calculation for PC’s. It compares very favorably to the
method used in [1], which we also programmed to check our calculations.

2 Notation, Basic lemmas and Hecke’s formula

We let K = Q(./ — d) be an imaginary quadratic field with d > 3, squarefree, and
d = 3mod 4, viewed as a subfield of the complex numbers. We understand by
/ — d the root with positive imaginary part. Throughout the paper square roots
and fourth roots of positive numbers will be chosen positive. For any number field
L, 0, will denote its ring of integers and for any ring R, R* will denote its group of
units. Note that 0k = { + 1} and — d = disc(K). By ideals we will always under-
stand integral ideals.
For integers N > 1 and n we let

n
en(n) = e*™¥

For complex numbers w; and w,, [w;, w, ] will denote their integral span in C. We
will use # for the upper-half plane, CI(K) for the class group of K, and if ./ is an
ideal, [.o#] for its class.

We give now a brief overview of the Hecke characters that we will consider. For
more details we refer the reader to [3, 13, 14] and [15]. Although we only prove our
final results in the case that d is a prime p = 7mod 8, we will carry on with a general
d as long as possible. We will indicate at the beginning of each section what
generality we assume in it.

The natural ring inclusion Z g Ok defines an isomorphism

ZJAZ = O0x )/ — dOx .

Composing its inverse with the Jacobi symbol (d) defines a quadratic character on
Ok, which we will denote by e Explicitly, we can write any ue@g as

u=(n+ m/ — d)/2, with n, m of the same parity, and then

(1) = (—23”) .
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We now look at the set ¥ of Hecke characters ¥ of K, of conductor (/ — d), that
satisfy
Y((0) = el

for o € O prime to d. It is not hard to see that the cardinality of ¥ equals A, the class
number of K, and that any two , Y’ € ¥ satisfy

Y = @eClK)*

where, with some abuse of notation, CI(K)* is the dual group of CI(K ). We extend
Y to all ideals by setting y(«/) =0 if o is not prime to d. It follows that
Y (/) = y(f) for every /. Each i € ¥ takes values in an extension T, /K of degree
h inside the complex numbers.

As usual, we define the L-series associated to ¥y € ¥ by

Lis;y) =Y !ﬂjs) :

which converges for Rs > 3. For any ideal class CeCl(K) we define the partial
L-series to be

Ly, 0= Y ‘#js) :

We clearly have
Lsy)= ) Lisy.0).
CeCl(K)

Also, it is easy to see that if o/ € C ! is an ideal prime to d, then

Noo/* e(y)y
2!#(&%)?:‘:, Ny*

L(sy,C) =

These partial L-series can be analytically continued to the whole s-plane, and
satisfy a functional equation. Our main interest is in their value at s = 1. The
starting point will be the formula due to Hecke given below (Theorem 2.6). As
opposed to Manin’s approach using the functional equations (see [10, Theorem
9.3]), following Hecke, we get values of weight one theta series rather than integrals
of weight two theta series. This was also the approach taken by Rohrlich in [11].

Before stating this formula, let us give two lemmas which we will use often; we
omit their (simple) proofs.

Definition 2.1 For any ideal % we let
R = {primitive ideals prime to F }
(Primitive means not divisible by rational integers > 1).

When F = Ox we will just write %, which then corresponds to the set of all
primitive ideals.
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Lemma 2.2 If o/ € &, then o € R, and we can write

of = a’?_'l"___ \é*d]

and

.J:_ag ——b+2\/—_~d:|’

where a = Nof = Nof and b is an integer (determined mod 2a) which satisfies
b?*= —dmod4a .

Conversely, given a solution b to this congruence and defining .o/ by the above formula
we get an ideal in # with norm a.

Lemma 23 Assume % =%. If of,, A,€Rz are relatively prime, then
A 1A € Rg. In particular, if of € Ry and (\/ — d) divides F, then A" € R4 for
every positive integer n.

Furthermore, if
of; = [ai,L E’_d]’ i=12,

then
sty oAy = Iia’fb_j.__ \é_d:‘ ,

with a = a,;a, and some b = bymod 2a;,i=1, 2.

Let us also note that for any ideal # and any class Ce Cl(K), #znC is
nonempty.
For any class C' € CI(K), we let

BC'(T) = Z qu” q= e2"i! ’
uesd’

where o/’ € C'"! and @’ = No/'. It is easy to see that this definition is independent
of the choice of ideal. It is known that this theta series is a modular form of weight
one, level d and character (d) (see [6, pp. 442-447], for example).

Definition 2.4 Given classes C, C' e CI(K) and € ¥ we take anideal # e Z;n C ™!
and we define

bc (¥, C) = b (1)/¥ (),

where

( /_d)d=[ad,.lf_‘.i+_2__ V_d:I
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for some integer b (by Lemmas 2.2 and 2.3), and
- bd+./—d
- 2ad '
Lemma 2.5 8¢ (¢, C) is well defined.

Proof. The proof hinges on the modular property of 8. ; in fact, the corresponding
result is true for any such modular form. We will prove it first for relatively prime
ideals <7, /' € #, that satisfy

' = (W)
for some pe.of. We let 7 = —ﬂi—‘r—— v/ —d

for some nonzero integers y and d, with d dividing y. By Lemma 2.3, y and 6 must be

relatively prime. AISO,
8( ) = —5
ny = .

Choose integers « and  such that aé — fy = land let v' = x

,  —bd+./—d

B 2a'd ’

. It is not hard to see that u/a = yt + 9,

+ 5
+9

. It is straightfor-
ward to check that

where @' = N.o/’ and b’ is such that
b'd —d
N e |

The claim now follows from the modularity of 6.

To prove the general case, given o/, .o/'€ #;~ C~' choose a third ideal
Be Ry~ C™1, prime to the norm of «7./’, and apply the previous case to the pairs
o, B and /', 4. This proves the lemma. [J

Now we can state the promised formula for the value of the L-series at s = 1.

Theorem 2.6 (Hecke’s formula) For any C e Cl(K) and any Y e P,

2\ ©
Ly, O)=(=]— Oc (, C) .
PERERY
Proof. See Hecke [6, pp. 450-455]). O

3 Factorization lemma

In this section we prove a crucial factorization of the value of the weight one theta
series in Hecke’s formula, as the product of two values of weight one-half theta
series and a constant.
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We set up the notation for the lemma as follows: Let C,,C, e C1(K). We choose
ideals oZ;€ #,,n C; ! for i = 1,2 such that their norms a; = N/, are relatively
prime. It is not hard to see that this is always possible. We let a = a;a,. By Lemmas
2.2 and 2.3 we can find odd integers b, b* and b such that

v‘ji=|:ai,-———‘—b+ > -d:l, i=12
%14%2: a,é_t_i..__— '_d]

L

— B * —
A oAy = a,b—i—z————— \/d]

N
where
b* = — bmod 24,
* = bmod 2a,
bb= — 1mod2a.
Finally, recall that we defined
be, )= 3, gV, q =,

uesd
and further let
O10(c) = 3, e,

kodd

one of the classical Jacobi theta functions (in Weber’s notation, see [20]).
Lemma 3.1 (Factorization lemma)
—bd+./—d\ 1 2\\4/ —d —b*+,/—d
Oc\—— |=5{1+{5 {010
2a,d 2 d \/a—l 2a
—b+.—d
010 ——‘_2 p .

Here ( is a 16th root of unity given explicitly by
2ba
(= em(ab)em(ab*)<—~l>ea2

az

where
{1 if n=1mod4
=i if n=3mod4.
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Remark. Note that ({ is actually an 8th root of unity.

Proof. We let k = 2a,;n + bm; this gives a bijection
{mneZ}{k,meZ:k =bmmod2a,} .

Therefore

_ 2ni(k2 +dm2/4a1)t
0C1 (T) = Z e“™ v .
k = bmmod 2a;

Now let © = ( — bd + \/ — d)/2a,d. Then

Oc <:_b_d_+____ V_d> = y e, < - B(M))e—nmmmzmamﬁ ‘
k = bmmod 2a;

2a2d 4

We will break the sum in two, according to the parity of k and m (recall that b is odd
so k and m have the same parity). We will give the details only in the case in which
they are even; the other case is entirely analogous.

It will be convenient to introduce the following notation. For relatively prime
integers M, N we let M' be an integer (determined modN) such that
M'M = 1mod N. We will only use M' as an argument in various functions of
period N, and therefore we will not need to indicate its dependence on N. It is easy
now to verify the next lemma.

Lemma 3.2 For relatively prime integers M, N
en(M'n)ey(N'n) = eyy(n)
for every integer n.
Assume then that k and m are even. Writing k, m for k/2, m/2 we get

S el — b(K? + dm?))e ¢ Hamria) 1V -

k =bmmoda;
Z eal — I;(kz + dml)zz)( _ 1)k+me—n(k2+dm2/a) 1/yd
k = bmmoday
by Lemma 3.2. We now replace the congruence condition on k and m by the sum
1 . ;
- Z ea1(]k)ea1( - b]m) ’
1 jmoday

and factor the k and m terms for each j to obtain

1
— 3, A;B;,

a; jmod a;

where

A=Y eq, (jK)ea( — BR?2)(— 1ee =0 11va
k
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and

B; =Y e,,(— bjm)e,(— bm?2)( — 1)me~"mHavd
Here we have used the fact that b2 = — dmoda. We now apply the following

lemma, a direct consequence of the Poisson summation formula, to A4;.

Lemma 3.3 Let f:Z — C be periodic with period N > 1, N odd; i.e..f(n + N) = f(n),
for all neZ. Then for t > 0 we have

Zf(k)( _ l)ke-ﬂ(kZ/N)t = t—1/2 Z f(kzl)e—n(kz/‘“v) 1t ,
k

kodd

where

A 1 . .
flk) = ﬁjméNf(J)en(Jk)

is the Fourier transform mod N.

In our case we have .
fk) = e,(jazk — b2'k?)

and N = a. Using the known values of Gauss sums we get

fu) = <§>8aea( — 2blazj + k)*) .

a

Using Lemma 3.3 and interchanging sums, we get, after some calculation,

C: T ew(Bar)blk +m?)e,(— 8'bn* + K2)(— [riZe 0+ mirsaVa

kodd, meven

where, again using the known values of Gauss sums,

C= 4\/E <%é>< _ aZ)g,,ea1 .
\/E; a a;

Now we do a change of variables via

This establishes a bijection
{m,keZ:m even, k odd}—{u,ve Z:uv = 1mod4}

u2+02

with k + m = u, and m? + k? = 5
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Hence our series can be written as
2 Y en((8ar)ybu)e,(— 16'b(u? + v2))( — 1)t =07 o) /d
u,v = 1 mod 4
(noting that the sum over u, v = — 1 mod4 gives the same value). Next, we factor

the series again to get 2C* 4 * B, with

A= Y e, (Bar)bu?)e,( — 16'bu?)eg(u)e w80V

u=1mod4
and

B= Z ea( - 16lb1,72)es( — v)e*n(vz/Sa)\/E ]

v=1mod4

Notice that
eq,(8ay)bu?)e,( — 16'bu?) = e,( — 16'b*u?) ,

since by definition
b* = — bmod2a,

b* = bmod2a, .

Therefore,

A= Z ea( — 16’b*u2)e8(u)e~n(v2/8a)\/3 -
1 mod 4

Now, by Lemma 3.2,
ea( — 16'0*u*) = e;6.( — b*u?)e;g(a'b*u?),
and similarly

e.( — 16'bv?) = e 6,( — bv?) e g(a'bv?) .

2
Using the known expression for the symbol (E) we get

a

e16(— a‘b*uz)es(u) = 916(ab*)es(1)(2>

and

e16( — abv?)eg(— v) = ej5(ab)es( — 1)<2> .

a
Finally, using the identity

Z eni(n’-/4)r =2 z eui(n2/4)t ,

nodd n=1mod4
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we arrive at

14/d —b*+/—d —b+/—d
5\/“—1('91o< 2a )910< 2a >
This completes the case where k, m are even. As we mentioned above, the calcu-
lations for k, m odd are similar, yielding the same term times (%) This finishes the
proof of the factorization lemma. O
Corollary 3.4 For d = 3mod8 and any Yy € ¥ we have

L1y, C) =0,
and consequently

L;¢)=0.

Proof. It follows immediately from the factorization lemma just proved and
Hecke’s formulia (Theorem 2.6). [J

Remark. The last statement also follows easily from the fact, proved by Gross in [3,

L . . . (2
Theorem 19.1.1], that the sign in the functional equation for L(s;y) is <3>

4 Definition of the invariants s and ¢

In this section we assume that d =7 mod8 and d # Omod3. We will define
complex numbers s(y, C) and t(y), C), for each C e C1(K) and y € P, using values of
Dedekind’s eta function and the classical Jacobi theta function 6,4, respectively.
They will be related to the right hand side of the factorization lemma (Lemma 3.1).
Some important properties of these numbers are given in the next section.

Definition 4.1 Given a class CeCl(K) we take an ideal &/ e #g; N C™ 1, and we

define .
s(, C) = eag(b)n(2)/¥h ()
and -
t(y, C) = e16(b) 0,0 (7)Y (),
where

ﬂ2=[a25+‘/“d]
’ 2

for some integer b (by Lemmas 2.2 and 2.3),

—b+—d
2a? ’

T=

”(1) = omi/12)e n (1 _ qn)’ q= e2nir’

nz1
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and

i0(r) = Y e™mid cex

nodd

Note that the definitions do not depend on the choice of b since

n(@+ 1) =en()n(),

and
O10(t+ 1) = eg(1)010(7) .

We will spend the rest of this section proving that the roots of unity by which n and
6, change (8th and 24th roots of unity, respectively) are under control.

Proposition 4.2 sy, C) and t(y, C) are well defined.

Proof. As in the proof of Lemma 2.5, we will show later that it suffices to prove that
the definition agrees on relatively prime ideals .o/, &/’ € %, that satisfy

' A = ()

for some pue.o/. In that case we choose u so that Ru > 0; this is possible because
@ is prime to / — d.

The idea of the proof is that T and 7', corresponding to .« and .’ respectively,
are related by an element of Sl,(Z) with controlled behaviour modulo 24. We can
then apply the transformation formulas for # and 6, to relate their corresponding
values. Roughly speaking, s and ¢t as functions of &/ have weight zero: n and
010 have weight one-half, .o/ appears squared, so the total weight of the numerator
is one, and ¥ also has weight one. The crucial point is the computation of the

quadratic symbol (g) (see below), which we will do in detail; we leave other

computations to the reader.
Fix Cand . Leta = N/ and a' = N.&/'. By Lemmas 2.2 and 2.3, (u) € #¢4 and

e

for some integer b. Note that d = 3mod 4 implies that b must be odd; also, a is
relatively prime to 2d. Since ue o/, we get that u=m3(—b + / — d) + na for
some integers m and n, which must be relatively prime because () is primitive. Let
¢ = (b? + d)/4a. It follows from d = 7mod8 that c is even, m is even and n is odd.

Also note that g, b are relatively prime since a is relatively prime to d and
b2 — 4ac = d. It follows from Lemma 2.3 that b = b + 2ar for some integer r, with
br = — cmoda. It is now a straightforward, if tedious, calculation to show that

@ =a*(yt +9)
where

y = (2an — mbym
6 = n? + 2rnm — m*(br + c)/a .
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We can clearly choose b and r so that b =0 mod3 and 6 > 0. We fix one such
choice for the rest of this proof; it will simplify matters when using the transforma-
tion formulas.

By Lemma 2.3, (42) is primitive so y and § must be relatively prime. Observe
that (y, 6) = (0, 1) mod 8. It is not hard to verify that modulo 3 there are two
possibilities: (i) u>= + 1 mod 3 or (i) u> = + ./ — dmod 3. (Recall that we
assumed d # Omod 3) It follows that: (i) (y,0)=(0, + I)mod 3 or (i)
(y, ) = (+ 1,0) mod 3.

o« p

We can therefore find integers « and f such that M = (y 5) € Sl,(Z), with

10 ) (1 0 . .
M=(0 1)mod& and either M=< 0 i_1>mod3 in case (i) or
M= 0 F1 mod 3 in case (ii). Finally, let

“\+1 0 ' ¥
., i+ p
Tyt 44

We leave to the reader to verify that

d,z_[a,z —-T)’+~/—d]
’ 2

and

2

L, —b+/—d
T = > ,
a
where

¢ = (b? + d)/4a®
a’? = &y? — byd + a26? )
B =1+ 28y)b — 2(ay¢ + Béa?) .

Notice that b’ = bmod 16 and also b’ = O0mod 3 in both cases (i) and (ii).
We are now ready to use the transformation formulas.

Theorem 4.3 Let (oc b
y 6

n(ﬁ I g) = (%)‘324(")\/?‘5 + on(1)

(ho(iz : g) B <§)es(p)\/mgl°(r) ’

k=30—1)+8p—17) —(6*— )y

> € Sl,(Z) with 7y even, § positive (and odd), and te€ #. Then

and

where
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and
p=06—1+9d8.

Here the square root is the usual branch with non-negative real part, and (g) is

the usual Jacobi symbol, where it is understood that ($) = + 1.
Proof. See {20, pp. 126, 131]. We have mod ified the notation slightly. [J

Applying this theorem to our situation, we see that p =0 mod8 and

k = 0 mod 24 in every case. Also ./yf + 6 = u/a because we have chosen Ru > 0.
We then have

aeqs(B)n(¥) = @)um@)nm
and

61316(5')910(%/) = <§>N916(1~7)910(f) .

Combining this with properties of y we see that

ess BIn(E) Y (t) = (g)e(u)e“(é’)n(f')/ww’)

and

e16(0)010(2)/ Y (/) = (§>a(u>em(5’>em(f»/w(w) :

Recall that ¢ is the quadratic character on Ok defined in Sect.2. It satisfies

V(W) = e(u)p.

As we said above, this is now the crucial point: we must prove that both signs
cancel out. That is, we have to prove the identity

(2
For this, let m = 2'm’ with m’ odd. Then by (1),
7\ _ (2an—mb\(2 ! m
é) B s)\é )"
2 1
Now (—) = + 1 since 6 =1 mod 8. Also § = n* mod m’; so by the quadratic

0
reciprocity law <%> = + 1. Notice that 2Ry = 2an — mb, and therefore

— mb
8(#)=<2and m )

’
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2
(reca]] that d = 7 mod 8, so (3) = + 1). Hence, it remains to prove that

2an — mb _ 2an — mb
o - d ’

It follows from (1), after a short calculation, that

4a%5 = — dm? + (2an — mb)(4arm + 2an + mb) .

Again, write 2an — mb = 2'k, where k is odd (and positive because of our choice of
u). By the quadratic reciprocity law we obtain

(52)- )
G-

(notice that 2q is relatively prime to k).

Similarly,
2an — mb _ _—_d
d “\ k
and we are done.

It remains to reduce the general case to the one just proved. Let then, ./,
'€ Reg N C™ 1. We can choose a third ideal # € R¢, » C ™' prime to the norm of
o/ o/’ and now apply the above case to the pairs o/, 4 and 7', 4. This completes
the proof of the proposition. [

and therefore

S Properties of s and ¢

In this section we assume that d is a prime p = 7 mod 8. To simplify our notation
we chose a character Yy € P, which we keep fixed for the rest of the paper, and we
drop the dependence on ¥ from our notations, as follows.

Oc(C) = Oc: (Yo, O)
$(C) = 5(Yo, C)
t(C) = tWo,0) .
Notice that ¥ = {@y: @ e CI(K)*} and that for Y = @y, we have
bc (¥, C) = ¢(C)bc:(C)
sy, C) = 0(C)s(C)
t(y, C) = (C)1(C).
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We also write

and

L(p) = L(1;04,) .
Note that

L(¢p'p, C) = ¢'(C)L(e, C) .

Finally let T = T, be the extension of K in the complex numbers generated by the
values of Y.

Let now j = j((1 + «/ — p)/2) where j(t) is the classical modular function. It is
easy to check that j is real. Let F = Q(j). We have then that F/Q is an extension of

degree h with a fixed embedding in the real numbers, and H = FK is the Hilbert
class field of K (see [9]).

Let M = TH. The above choices fix an embedding of M/®@ in C. We let
M?* = M~ R. It is not hard to see that T H = K (see [1]). We may therefore
identify CI(K)* with the embeddings of M/H in €, the trivial character correspond-
ing to our fixed embedding. We will use the same letter ¢ to denote the embedding
corresponding to ¢ € CI(K)*. Also, we may identify Gal(M/T) with CI(K) via the
Artin map. For a class CeCIl(K) we denote the corresponding automorphism
by Oc.

We now summarize all the properties of the invariants s and ¢ that we will need.

Proposition 5.1 (i) s(C) and ¢(C) are nonzero for every class C.
(i) s(C) = s(C™ ') and t(C) = t(C™1).

Proof. Part (i) follows from the fact that neither # nor 6, vanish on the upper-half
plane. Part (ii) is an easy consequence of the definitions. [J

Definition 5.2 Let C, denote the principal class. For every class C we define

uc = s(C)/s(Co)
and
ve = t(C)/t(Co) .

Note that by the above Proposition u¢ and v¢ are well defined.

Theorem 5.3 (i) uc is a unit in M.
(i) For any C, C' and o,

Uc = Uc-1

ug = (Cuc
ucu"cf, P = Ucer -
(iii) Consider the elements & =1 — 20p and & =1 — 2ap-1 of the group ring

Z[Gal(M/T)], where D =[2] and 2 = [2,(1 + / — p)/2] is one of the primes of
K above 2. Then for every class C

ve = uf .
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(iv) Properties (i) and (ii) also hold for vc.

(v) The map
CUK) = (Om/20y)

C = Uc
is a homomorphism.

Remark. The units uc and v¢ are a slight generalization of elliptic units and are
similar to the ones in [1] and [4] (but there is a clash of notation!).

Proof. Our claims are consequences of the Shimura reciprocity law. We will not
need its full strength and hence we will use its more classical formulation. For this
we will follow Deuring [2] and Stark [17]. We will also need some facts from
Lang’s book [9]. We first set up some notation that we will use throughout this
proof. As in Sect. 4, for any ideal &/ € #¢, we write

ﬂ2=[a2 ~b—-—+ Y —p]
b 2 .

We define

- —b+J—p — /—
(o) = eaab — 1r ) o )

and

. —b+. - —1+./-
V(st) = exob — 110 =P o, 7).
2a 2
These are well defined because the right hand sides are independent of b. It is easy

to see that
uray = U(A) o(sA) (3
and

gy = V(&) Yo() . 4

We now pick an ideal o/ € s, C'~! and let a = No/. By the Chebotarev
density theorem there exists a prime ideal of degree one, £ say, in #e,, N C -1
As before, we choose an odd integer b so that

o =[az b+ —p \/*‘P]
b 2 bl

¥ [lz b+ —p \/"P]
b 2 b

and

AN

Here | = N.% and 2 is the prime above 2 chosen in (iii).
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We define a function on the upper-half plane by

2
g(0) = n(t/a’)
()

It is an easy matter to verify that
—b+/—-p
U() = g(——————z > :

It follows from [2, p. 14] and [9, Chap. 12-13] that g € #,. (notation as in [9]),
has no poles (or zeros) in the upper-half plane, and has integral coefficients in its
g-expansion at every cusp.

We can now start with the proof. By [2, p. 41], U(«)e Oy and (U () = 4 Oy.
Also, Yo(L)eOr and (Yo(H)) = L Or. Therefore, by (3), uc is a unit in M,
proving (i).

The first two properties in (ii) are easy. For the third, we apply [17, Theorem 3]
twice, using

@ LMJ
| 2
and
P = _12 b+ —p
L ’ 2
to get
o _ [ —bF+/ P —b+—-p
Ul) ”( 24212 >/"< 202
Therefore,

Uy =UAL)/UY).

Our claim now follows from (3).
To prove (iii) we recall the classical formulas (see [20, p. 114])

010(t) = 2n(21)*/n(1)

and
eas(Dn(x)> = n20)n(x/2)n((x + 1)/2) .
Combining these, we obtain
010(v) = 2e24()1(2)>n(z/2)2n((z + 1)/2)7% . 5)
Again by [17, Theorem 31, if t = (— b + / — p)/2 then
9(t/2) = U(L)™", (6)
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and also
g((x + a*)/2) = U(L)™ . )
Now notice that
¢&=5—20p—20p-1,
and so by (5), (6), and (7),
V(o) = US)E. @)

Our claim now follows from (3) and (4).
Part (iv) is a direct consequence of (iii), (ii) and (i).
Finally, we prove (v). It will be enough to show that

V(e/) =1 mod 20y .

By the fundamental property of the Artin map, for any integer a € Oy prime to 2,
we have

o =1 mod 204, 9)
and
ol =1 mod 20y (10)

(recall that H/K is abelian). )

So now (v) follows from (8) by taking « = U (/) and o = U(¢/)* in (9) and (10),
respectively. (It is not hard to see that these numbers generate .o/ and, in particular,
they are prime to 2). This completes the proof of the theorem. [

6 Formula for the L-series at s = 1

In this section we continue to assume that d is a prime p = 7 mod 8. Recall that h is
odd when d is prime and hence every class is a square in CI(K).

Propeosition 6.1 For any classes C, C' € C1(K) we have
0c:(C%) =% /pt(CCH(CC' ™).

Proof. 1t follows from the factorization lemma (Lemma 3.1) applied to squares of
ideals, and the definition of t. We leave the details to the reader. [

We can now combine this with Hecke’s formula (Theorem 2.6).

Theorem 6.2 For every class Ce Cl(K) and every ¢ € CI{K)*,

() Lip. C?) = o(CY = T t(CCHu(CC™Y,

\/; C’'eC(K)
2
(i) L(p) = %—;(Ceczm qo(C)z(C)> :
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and

) h
(i) Y L(g) = 7%% HCO)P? .

Proof. Recall that every class is a square. Part (i) follows directly from Proposition
6.1 and Hecke’s formula (Theorem 2.6). Part (ii) follows from (i) after a change of
indices in the sum. Part (iii) follows from (ii) by expanding the right hand side and
summing over ¢. [

Corollary 6.3 For ¢ e CI(K)*, let

o) =Y ¢(Choc .

Then for every Ce ClI(K) and ¢, ¢’ € CL{K)*, we have

0) gy = vc (@) .
(ii) l@)” = Ug o),

and

(i) L(p) = ;"f-p-r(comoﬁ .

Moreover, l(9) is a nonzero integer in (M *)?; in particular
L(p) > 0.

Remark. That L(¢) is positive was first proved by Rohrlich in a different way (see
4
[117). Regarding the integrality of # t(Co)~ %2 L(¢), compare [5, Corollary 3.2].

Proof. Parts (i) and (ii) follow easily from the properties of ¢ given in Theorem 5.3.
The identity in (iii) follows from part (ii) of the theorem. It is clear that /(¢) is an
integer in M fixed by complex conjugation. It is also clear that each L(¢) is
a non-negative real number. To see that it is actually positive, observe that by part
(iii) of the theorem, Z¢L(‘P) is positive (we have shown in Theorem 5.3 that ¢(C) is
never zero). On the other hand, by parts (ii) and (iii) of this corollary, if one of the
summands is zero, they all are. We conclude that L(¢) is positive for all ¢. O

Remark. Let us note that v, and therefore /(¢), remains unchanged if we replace
t by — t. In particular the sign of I(¢) is uniquely determined. Interestingly, not all
of these signs can be the same. To see this, note that

Y lp)=h
and ’

Y @) =hY locl? .
@ C
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Therefore
1
2 2 @) =h =T ocl.

o*e’ C

A crude estimate using the definitions (left to the reader) shows that |vc| = 1 for
every class C. Hence, the right hand side is negative and, in particular, not all of the
l(¢) can have the same sign.

7 The curve A(p)

Throughout this section we assume that d is a prime p = 3 mod 4. Following
Gross we consider the elliptic curve A(p) and state some of its properties. For
details and proofs we refer the reader to [1, 3, 4, 13, 14], and [15]. Recall

the notation introduced at the beginning of section 5: j = j((1 + / — p)/2) where
j is the classical modular function, F = Q(j), and H = FK is the Hilbert class
field of K.

We define the elliptic curve A(p) by the Weierstrass equation

mp np*

VISRt T

where m and n are the unique, a priori, real numbers such that
m’=j,

—n?p=j—1728,

sign(n) = <§> .

Actually m and n lie in F and so the curve A(p) is defined over F. We let = Z—; be

and

the differential associated to this model; it is straightforward to check that
A(w) = — p? and that j is the j-invariant of A(p).
The only primes of bad reduction for A(p) are the primes dividing p. In F we
have
() =2P% ... Pk

where h' = (h — 1)/2. The type of reduction for each of these primes is given
explicitly by Gross in [3, 14.17. For our purposes it is enough to know the value of
m,, the number of connected components of the Neron model of A(p) at v that are
rational over the residue class field. These are as follows:
(i) for v = Py, m, =2, and
forv=2,G=12,...,H),m =4
We note in passing that from the above factorization of p and the fact that no
other prime ramifies in H/Q, it follows easily that the discriminant of F/@ is p".
The torsion subgroup of A(p) over F is of order 2 and A(p)(F) has rank zero
when p = 7 mod 8.
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The curve A(p) over H has complex multiplication by @k and its associated

Hecke character is i e Ny, for any e V. It follows that the L-series of A(p) over
F factors as

L(s; A(p)/F) = [] L(s; ¥) - (11)
Yye¥
8 Formula for the square root of the predicted order of the
Tate-Shafarevich group

In this section we assume that d is a prime p = 7 mod 8. We will put our formula
for the L-series at s =1 (Theorem 6.2) together with the calculation of all the
factors involved in the Birch-Swinnerton Dyer conjecture to obtain a formula for
the square root of the predicted order of the Tate Shafarevich group of A(p) over F.
We will be able to show that this number is in fact an integer. Our formula gives
a specific choice of sign for this square root, which seems very interesting.

For the setting up of the Birch-Swinnerton Dyer conjecture we follow Manin
(see [ 10, Sect. 8]). In Sect. 7 we already have most of the terms: we know the order
of the torsion, the discriminant of F/@, and the m,’s corresponding to primes of bad
reduction. We also have a formula for the value of the L-series of A(p) at s = 1;

namely
h 2
L(1; A(p)/F () ) ,
(1; A(p)/F) = (\[) ((Pecm* Cegmfp( )e( ))

obtained by combining Theorem 6.2 (ii) with (11). It remains to compute m, for the
archimedean primes of F.

As in Sect. 5, we identify the Galois group of H/K with the class group CI(K) via
the Artin map. We pick representatives &;e Z fori =0, 1, . .., b’ (here, as before,
K = (h — 1)/2) such that

CI(K) = {[VQ{O]a [dll sy ["dh’]a ["Q/].]_la cees [&{h’]_l} ’

where [.«/] denotes the class of .« in CI(K). We choose &/, = 0.
By Lemma 2.2 we can write

o = I:ai’ bi+v—p \2/_p:|

fori=0,..., 1, where g, = NoZ;. We let 7, = —_—{)'—+—— “_p.

Corresponding to «/; we have an embedding of F in the complex numbers
which we will denote by o;. For i = 0 we have our chosen real embedding of F, and
fori=1,..., " we have pairwise nonconjugate complex embeddings.

Recall that w is the differential form on A(p) defined in Sect. 7. It is not hard to
see that the lattice of periods of w” is Q;[1, 1;], for some Q;, which is real for i = 0,
and complex fori=1,..., k'’ Since 4(w°) = — p> foreveryi=0,1,..., I, we
obtain

il = —

n(l?
f

where # is Dedekind’s eta function.
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Using now the formulas in [10] it is not hard to verify that:

(i) for v = gy,

m,

2n
= 7;“7(70)'2 3

(i) forv=0;andi=1,..., ¥,

2 2
m, =£<%ln(ri)|2> .

We need one more fact.

Lemma 8.1 With the notation as above, we have the identity

ul I"I(Ti)|2
| I e = I l C).
M(TO)liﬂ \/a—i CeCl(K)t( )

Proof. This follows from Theorem 5.3. We leave it to the reader. [

Remark. The product [ [,m, can also be given in terms of values of the classical
gamma function. This is the Chowla-Selberg formula. See [4] for example.

Theorem 8.2 Let

L(p) = 1 Il«peCl(K)* ZcEcx(K) p(C)(C)
271 nCeCl(K) (K) ’

(i) The number & (p) is a nonzero rational integer.
(ii) The predicted order of the Tate-Shafarevich group of A(p) over F equals
Z(p)*.

Proof. The proof of (ii) amounts to putting together all the terms calculated above
into the Birch-Swinnerton Dyer conjecture, as given for example by Manin (see
[10, Sect. 8]). We leave this to the reader. We now prove (i). That & (p) is nonzero
follows from Corollary 6.3 (iii). By dividing numerator and denominator by t(Cy)"
(here again, C, denotes the trivial class) we can rewrite the formula as

1[I, 2ce(C)oc
y(p)—zh—l I—ICDC ’
where ve = t(C)/t(Cy) are the units defined in Sect. 5. This already shows that & (p)

is an algebraic number with at most powers of two in the denominator. We need to
prove: (i) #(p) is a rational number, and (ii) 2" ! divides the numerator.

(i) To show & (p)is a rational number, we check its behaviour under the action
of Gal(@Q/Q). For this we use the various properties of ¢ described in Theorem 5.3.

(a) Both numerator and denominator are fixed by complex conjugation since
we have ¢(C) = ¢(C 1) and t(C) = t(C™1).

(b) Under the action of o¢:, for any class C e C1(K), the numerator changes by
a factor of vc"[], ¢ ~*(C), and the denominator by vc". Since CI(K)* is of odd
order, it follows that & (p) remains fixed.
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(c) Under the action of ¢, for any ¢ € CI(K)*, the numerator remains fixed and
the denominator changes by a factor of l—[cqf 1(C). Again, since CI(K) is of odd
order, &(p) remains fixed.

This shows that &% (p) is a rational number.

(ii) To show that 2"~! divides the numerator in the formula for &(p), let
M’ = M((,), where {, is a primitive hth root of unity. Let 2 be any prime of M’
above 2. It follows from Theorem 5.3 (v) that the map

CH(K) — (O | 2)
C e

is a homomorphism. Therefore, h — 1 of the factors in the numerator are divisible
by 2, the remaining factor being congruent to h mod 2. This is enough for our
purposes, but note that & is odd so that exactly & — 1 of the factors are divisible by
2. We conclude that 2"~ ! divides the numerator, since 2 is unramified in M’/Q.
This completes the proof of the Corollary. [

9 Table

In this section we include a table of the values of ¥ (p) for primes p = 7 mod 8 less
than 3000. We may make a few remarks. First, very few of these numbers are even;
this is probably related to fact that the 2-part of the Tate-Shafarevich group fixed
by Galois is trivial (see [4]). In all examples where ¥ (p) is even it is also divisible by
4. Second, the numbers & (p) grow very rapidly with p and seems natural to expect
them to tend to infinity; in fact, the h-th root of &(p) seems to be a slowly
essentially increasing function of p. The calculations also seem to indicate that
p = 487 is the last prime with ¥#(p) = + L.

p h & (p) p h & (p)

7 1 1 463 7 73

23 3 -1 479 25 — 802369

31 3 1 487 7 1

47 5 1 503 21 —151

71 7 3 599 25 19597793
79 5 -3 607 13 3723

103 5 1 631 13 —8199

127 5 3 647 23 —233639

151 7 -9 719 31 — 1667632553
167 11 —115 727 13 9393

191 13 —131 743 21 553649

199 9 —43 751 15 —30436

223 7 —-47 823 9 — 2885

239 15 357 839 33 — 136363465939
263 13 =21 863 21 43265419
271 11 29 887 29 —799319015
311 19  —7185 911 31 101669719469
359 19 —30529 919 19 — 6983195
367 9 171 967 11 105013

383 17 3321 983 27 4475472187
431 21 — 29976 991 17 325251

439 15 11311 1031 35 1881259442341
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p h &(p) p h Z(p)

1039 23 — 44931457 1951 33 35824844471641

1063 19 — 2492169 1999 27 — 17038555487

1087 9 — 7493 2039 45 — 612976093531479229

1103 23 — 13010521 2063 45 53534416007696889040

1151 41 — 8422760498003 2087 35 — 385471050781

1223 35 268182807825 2111 49 — 3238384256630627126675
1231 27 167342437 2143 13 821595

1279 23 — 85163285 2207 39 — 42907145154487223

1303 11 5355 2239 35 14478184446851

1319 45 — 139647575106523413 2287 29 526738119443

1327 15 — 15371 2311 29 — 39291761934983

1367 25 319059600 2351 63 3259496183640400896670687
1399 27 — 613369452 2383 29 32238586919

1423 9 240388 2399 59 26866771242856003982690113
1439 39 4571993303375 2423 33 27679998882827

1447 23 4394787 2447 37 — 779681288967987

1471 23 — 436269935 2503 21 1378792179

1487 37 178107280559 2543 35 — 1770945783765240

1511 49 9341609604469929 2551 41 1666137270760191923

1543 19 64763035 2591 57 — 26816260710910034928973
1559 51 103388761720463677 2647 15 66784929

1567 15 — 12369639 2663 43 — 162124593439144934039
1583 33 89427244881719 2671 23 71684499

1607 27 524286640211 2687 51 6242332599034307618716
1663 17 — 4742751 2711 53 — 152998708643518444621
1759 27 — 1331737066655 2719 41 —91921478549620405

1783 17 8140797 2767 21 — 399869556

1823 45 49747212133304799488 2791 39 8044448046795653

1831 19 — 213575585 2879 57 6245912690491342295948609
1847 43 — 11783606010669817 2887 25 — 23296822398697

1871 45 328894316393842365831 2903 59 4481256203885731006684319085
1879 27 105352698996 2927 31 1152748492348591
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