
INFORMATION TO USERS

T he m ost advanced technology has been  used to  pho tog raph  and 
reproduce this manuscript from the microfilm master. UM I films the 
text directly from the original or copy submitted. Thus, some thesis and 
dissertation copies are in typewriter face, while others may be from any 
type of computer printer.

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and photographs, print bleedthrough, substandard margins, 
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send U M I a com plete 
manuscript and there are missing pages, these will be noted. Also, if 
unauthorized copyright material had to be removed, a note will indicate 
the deletion.

Oversize m aterials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand corner and 
continuing from left to right in equal sections with small overlaps. Each 
orig inal is also pho tographed  in one exposure and  is included in 
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6” x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI directly 
to  order.

University Microfilms international 
A Beil & Howell Information C om pany 

300  North Z ee b  R oad Ann Arbor. Ml 48106-1346 USA 
313 761-4700 800  521-0600



Order N u m b er 0105202

On th e  square root o f specia l values o f certa in  L-series

Villegas, Fernando Rodriguez, Ph.D .

The Ohio State University, 1900

U M I
300 N. Zeeb Rd.
Ann A fter, MI 48106



ON TH E SQ UA RE ROOT OF SPECIAL  
VALUES OF CERTAIN L-SERIES

DISSERTATION

Presented in Partial Fulfillment of the Requirements for 

the Degree Doctor of Philosophy in the Graduate 

School of the Ohio State University

by

Fernando Rodriguez Villegas 

*  *  *  *  *

The Ohio State University 

1990

Dissertation Committee:

Prof. W. Sinnott.

Prof. J. Hsia.

Prof. R. Gold.

Approved by

'Jfj.

Advisor 

Department of Mathematics



je me resigne, Monsieur, a inter- 
roger les formules elliptiques des diverses 
categories, en demandant a chacune son 
secret arithm 6 tique, e t a recueillir les 
reponses utiles ou inutiles avec patience et 
perseverance; plus laboris quam artis.”

Letter of Hermite to Stieltjes, March 12 
1884.

“I had opportunity of seeing a Phe
nomenon. I had never before seen a lunar 
rainbow, which appeared about 1 0  o’clock, 
very faint and almost or quite without 
colour, so that it could be traced by lit
tle else than appearence, which looked like 
shade on a cloud.’’’

Entry of October 16, 1768. The Endeavour 
Journal of Sir Joseph Banks.
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C H A PT E R  I

Introduction

1.1 Introduction

In his thesis (see [3]), B.Gross defined an elliptic curve A(p), which has complex 

multiplication by K  — Q ( \ /—p)i f°r every prime number p. It is defined over the 

Hilbert class field of K. We give a brief description of this curve in section 3.1 

using notation established in section 1 .2 .

Among m any other things, Gross proves that A(p) has rank zero when p = 

7 mod 8 . In this case the conjectures of Birch and Swinnerton-Dyer predict that 

the value of the  L-series of A(p) at s — 1, when divided by an appropriate factor 

(call this quotient 5(p)), must be the order of the Tate-Shafarevich group of A(p). 

It is known that, when finite, the order of this group is a  square. So, in particular, 

the conjectures imply that 5(p) must be the square of a nonzero integer. In this 

paper we give a proof of this last statem ent. In fact, we obtain in section 3.2 an 

explicit formula for a square root of S(p), which includes an intriguing choice of 

sign.

1
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This is acomplished by first giving an explicit formula for the square root of 

the value at s =  1 of certain L-series of Hecke characters of K  (see Theorem 2.4.2

(ii)). O ur starting point is a formula of Hecke (Theorem 1.2.6), which involves 

values of the ta  series of binary quadratic forms. These values can be factored as 

values of the  classical Jacobi theta  function $l0 (notation as in W eber’s book [12]). 

This is our crucial Factorization Lemma 2.1.1. It was only after much of this work 

was finished that we found that this factorization is actually a consequence of a 

somewhat neglected result of Kronecker (see [7, vol. IV, pp. 354-357]). We expect 

this more general result to  provide some insight as to how to extend our work to 

quadratic twists of A(p).

Roughly speaking, the  factorization exhibits the value at s =  1 as a  sum of 

h2 term s (here k is the class number of K ),  each a  product of two factors out of 

a set of h. This then equals the square of the sum of the h factors. A precise 

formulation is given in section 2.4.

Finally, we use the  Shimura reciprocity law to  get algebraic and Galois prop

erties of th e  terms in the new formula. This is established in sections 2,2 and 2.3 

using the formulation in Deuring, Lang, and Stark. ([2],[8 ], and [11]). These prop

erties allow us to show th a t *S(p) is a nonzero rational square. A further argument 

shows tha t a  possible denominator of 4h~l actually divides the num erator, proving 

it to be an integer. This is done in section 3.2.

Our original intention was to calculate S(p)  for various p to investigate their
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nature. We found the above mentioned formula after trying to simplify the calcu

lations involved. The formula does provide & very effective way of computing S(p). 

We have programmed it in K ida’s language Ubasic, which allows fast arbitrary pre

cision calculations for P C ’s. It compares very favorably to the m ethod used in [1] 

based on M anin’s formula (see [9, Th. 9.3]). M anin’s formula is a  consequence of 

the functional equations satisfied by the L-series, and as such is more general than 

ours since it also covers quadratic twists of A{p). In order to check our calculations 

we programmed this method as well.

1.2 N ota tion , B asic Lem m as and H ecke’s Form ula

We let K  — Q ( \/~ d ) , d > 3 be an imaginary quadratic field with d  =  3 mod 4 

and we fix an embedding of K  into the complex numbers. For any number field 

L, O l will denote its ring of integers and for any ring H, R* will denote its group 

of units. Note that =  {±1} and d — d isc(A ). By ideals we will always 

understand integral ideals.

For integers iV >  1 and n we let

e/v(n) — e2**#.

For complex numbers itf* and ujj, [iei,u>a] will denote their integral span in C. We 

will use 7f for the  upper-half plane, C l(K )  for the  class group of A', and if A  is an 

ideal, [̂ 4] for its class.

We give now a brief overview of the Hecke character of K  related to the elliptic
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curves A(p). For more details we refer the reader to Gross [3] or to  section 3.1 

where we summarize what we need about these curves.

The natural ring inclusion Z t~+ O k  defines an isomorphism

Z /dZ  O /r/V ^dO /c .

Composing its  inverse with the Jacobi symbol ( j )  defines a quadratic character 

on O k , which we will denote by e. Explicitly, we can write any p € O k  as 

H =  {n +  m y /—d ) l 2 , with n ,m  of the same parity, and then

=  (^ r) -

We now define a Hecke character 0  by the following conditions:

(i) If A  is an ideal of O k  prim e to d, then

0M) -  P

where A h — (a ) , e (a) =  + 1 , and /? is a complex number such th a t = a . Here 

h is the class num ber of K .

(ii) If a  is an integer prime to  d, then

0 ((a)) =  e (o )a .

(iii) If A  is not prime to d, then 0(A ) =  0 .

There are h such characters, and any two 0 , 0 '  satisfy

0/0' = e ci(Ky



where, with some abuse of notation, C l(K )* is the dual group of C l(K ). We will 

fix one such 0  once and for all. It takes values in an extension T / K  of degree h,

with a fixed embedding in the complex numbers. Note that 0 (,4 ) =  0(-4)- 

As usual, we define the L-series associated to 0  by

which converges for Sfcs >  §. For any ideal class C  G Cl{K)  we define the partial 

L-series to be

We clearly have

and

Aec

£(*;& )=  £
C € C (( if)

L(s; y>0, C ) =  v?(C)L(s; 0 , C)

for every tp € C l(K )m. Also, it is easy to see that if A  G C~l is an ideal prime to 

d, then

N^4* ^  £(7 ) 7X (s;0 ,C ) - it ’
20 M )  N 7- '

These partial L-series can be analytically continued to the whole s -plane, and 

satisfy a functional equation. Our main interest is in their value at s — 1. The 

starting point will be the formula due to Hecke given below (Theorem 1.2.6). As 

opposed to Manin’s approach using the functional equations (see [9, Th. 9.3]),



following Hecke, we get values of weight one theta series rather than integrals of 

weight two theta series. This was also the approach taken by Rohrlich in [10].

Before stating this formula, let us give two lemmas which we will use often; we 

omit their (simple) proofs.

D efin ition  1 .2 . 1  For any ideal T  we let

= {primitive ideals prime to P ]

(Primitive means not divisible by rational integers > 1 ) .

When T  — O k  we will just write 7Z, which then corresponds to the set o f  all 

primitive ideals.

L em m a  1 .2 . 2  / /  A  €71, then A  €  7Z., and we can write

b + y / ^ 1  
■ 4 =  [a, — — ]

and

— 6  +  v '—d,
A  = [a ,------ 2 ------ 1’

where a =  =  N .4  and h is an integer {'rfefermtnerf mod 2a) which satisfies

b2 = —d mod 4a.

Conversely, given a solution b to this congruence and defining A  by the above 

formula we get an ideal in 71 with norm a.
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Lem m a 1.2.3 Assume. T  =  T . I f  A\,A%  € I t?  are relatively prime, then 

A 1 A 2  € I t? .  In particular, i f  A  € Tt? and (V —3) divides T , then A n € Tt? for 

every positive integer n.

Furthermore, if

a  _  r _  _  1 o— [®tj g ]> * — 1 »2 ,

(ften

J A f ^ +  %/— <?!-4i-42 —----- 2 -----J’

with a — a ia 2 and some 6  =  6 , mod 2 a;, t =  1 , 2 .

Let us also note that for any ideal T  and any class C  € Cl{K), I t?  Pi C is 

nonempty.

For any class C* 6  C l(K ),  we let

M r )  =  £  ?N"/a\  Q =  e2' " ,

where A! € C" _ 1  and a' =  N.4'. It is easy to see that this definition is independent 

of the choice of ideal. It is known that this theta series is a modular form of weight 

one, level d and character (^) (see [6 , pp. 442-447], for example).

In the next definition we will not indicate the dependence on the character ip, 

which remains fixed.

D efin ition  1.2.4 Given classes C,C* € C l(K ) we take an ideal A  € ltd  n  C~l 

and we define

Bc{C) =  0C'(r)/tP(A),
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where

for some integer b (by Lemmas 1.2.2 and 1.2.3), and

—bd +  yj—d 
T =  W  ■

Lem m a 1.2 .5  $ c (C )  is well defined.

P roo f: The proof hinges on the modular property of &c>\ in fact, the corresponding 

result is true for any such modular form. We will prove it first for relatively prime 

ideals A , A 1 € ltd  that satisfy

A! A  =  (/*)

for some fi € A .  We let r  =  It is not hard to see that p /o  =  y r  +  6,

for some integers 7  and 6, with d dividing 7 . By Lemma 1.2.3, 7  and S must be 

relatively prime. Also,

e0 <) =  (g)-

Choose integers a  and 0  such that aS — 0 7  =  1 and let r '  =  It is straight

forward to check that

, - b 'd + y f ^ d
T ~  2a‘d 

where a ' =  N«4' and 1/ is such that

(v<c1)A' = W i f i + f r3].



9

The claim now follows from the modularity of dc>-

To prove the general case, given A , A ' €  'JZd H C~l choose a third ideal B € 

ltd  H C~l , prime to the norm of A A \  and apply the previous case to the pairs A y B 

and A \  B. This proves the lemma. □

Now we can state the promised formula for the value of the L-series at s =  1.

T h e o re m  1.2.0 (Hecke’s formula). For any C  € Cl{K),

£(1; = (j)~75 5Z 8c*{C).
a Va  c'ec/(AT)

Proof: See Hecke [6 , pages 450-455]. □



C H A P T E R  II 

Square root o f  special values

2.1 Factorization  Lem m a

In th is section we prove a crucial factorization of the value of the weight one theta  

series in Hecke’s formula, as the product of two values of weight one-half theta  

series and a  constant.

We set up the notation for the lemma as follows: Let C \ , C2 € C l(K ).  We 

choose ideals A i € Tt-u H C~l for t =  1 , 2  such that their norms a, =  N A  are 

relatively prime. It is not hard to see th a t this is always possible. We let a — ata2. 

By Lemmas 1.2.2 and 1.2.3 we can find odd integers b,b* and b such that:

A r_ b +  _• , 0
At  — [fl,i g J> * — 1 . 2

A A I ^  +  V —A i A 2 — [a ,-----   ]

i  a r +  y/~d,A 1 A 2  -  [a ,------  ]

10



11

where

6 * =  — b mod 2 a i 

bm = b mod 2 0 2  

bb = — 1 mod 2 a.

Finally, recall that we defined

« o .( f ) =  E  ? =  e2" \

and further let

* i o ( r )  =  £  ' * ^ T.
He odd

one of the classical Jacobi theta functions (in Weber’s notation, see [12]).

L em m a 2.1.1 (Factorization Lemma)

~ b d + y / ^ 3  1 2 \ / d  -6 *  + s /^ d .^  i + y C S
9cA  2ati  > =  2 +  {d )]^  ■ M  2J > ■  2a------>'

Here C is a 16th root o f unity given explicitly by

C =  c16(a6)ej6( o 6 * ) ( ~ ) { —^ ) e acQ, 
a 2 ai

where

f ! i / n s l  
n \  t t /n  = 3

=  1 mod 4 
mod 4.



12

R e m a rk : Note tha t (  is actually an 8 th  root of unity.

P ro o f: We let k =  2oi« +  bm\ this gives a bijection

{ m ,n £  Z} *— ► {A, m  €  Z : k = bm mod 2 «i}.

Therefore

« c , W  =  £
Jtgfrrn m od  2f»i

Now let r  — (—bd +  yf—d)j2a.2d. Then

„ , -b d  + ^  ,, k2 + dm 2
° c *(  o7~A ) =  2 -  « a a ( - 6 ( -------t -------))«

2 a ^  m od  3 a , 4

We will break the sum in two, according to the parity of k and m (recall tha t b is 

odd so k and m have the same parity). We will give the details only in the case in 

which they are even; the other case is entirely analogous.

It will be convenient to introduce the following notation. For relatively prime 

integers A/, N  we let M i be an integer (determined mod N)  such that M lM  =

1 mod N.  We will only use M * as an argument in various functions of period A', 

and therefore we will not need to indicate its dependence on N.  It is easy now to 

verify the next lemma.

Lem m a 2.1 .2  For relatively prime integers M , N

eN( M in)eM(N*n)  =  e M jv ( n )

for every infe^er n.
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Assume then  that k and m are even. W riting ifc, m  for fc/2, m / 2  we get

k = b m  rood a ,

-  £  ea( - b ( k 2 +
k = b m  m od 01

by Lemma 2.1.2. We now replace the congruence condition on k and m  by the

sum

-J- 5 Z eai(j/:)eai(-fcjm ),
1 jro o d  o i

and factor the  k  and m terms for each j  to  obtain

r: E  *■&,

where

jm o d  d |

k

and

B s ^  E c» i ( - 6J m )e- ( - 6 m*2 * ) ( - i r c' ,r,^ ' /3-m

Here we have used the fact th a t b2 =  — d  mod a. We now apply the following 

lemma, a  direct consequence of the  Poisson sum m ation formula, to  Aj .

L em m a 2 .1 .3  Let f  : Z —+ C be periodic with period N  > 1, N  odd; i.e., 

f ( n  + N)  = f ( n ) ,  for all n 6  Z. 77>en for t > 0 we have

£  f ( k  2l)e~r &  *,
fc fc odd
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where

,mod Nj  m od

is the Fourier transform  mod N .

In our case we have

f ( k )  =  ea( ja 2k — b 2lk 2) 

and N  = a. Using the  known values of Gauss sums we get

/(* )  =  ( ~ ) f*ca ( - 2 ‘6 (a 2j  +  *)*). a

Using Lemma 2.1.3 and interchanging sums, we get, after some calculation, 

O-  £  c .1 ((8 a 2 )*6 (Jfc +  m )2 ) e . ( - 8 *6 (m a +  Jfc*))(-l)^e-,r£*fd ' / 3
fc odd, m  «ven

where, again using the  known values of Gauss sums,

„  't/d ,2 b s —a2^
C =  - = ( — )(— )e»c.|. y/a\ a2 aj

Now we do a change of variables via

  V—Vm

K -  2 .

This establishes a  bijection

{m, k €  Z : m  even, k odd} <— ► {«, v €  Z : uv  =  1 mod 4} 

with k +  m  — u, and m 2 +  k2 — .
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Hence our series can be written as

2 C  ■ £  e0l((8o2)‘6u3)ea(-16*6(ua +  « * ) ) ( -
u ,v = ltn o d  4

(noting that the sum over u, v = — 1 mod 4 gives the same value). Next, we factor 

the series again to get 2C A B ,  with

A = ^ 2  eai((8a2)‘A«2)e0(—16l6u2)e8(ti)e-,rfcv/J
U slm o d  4

and

B — ^  c«(—16*6u3)ea(—v)e~*fc^.
v = lm o d  4

Notice that

eai((8o2)‘6u2)ea( -1 6 '6 u 2) =  ea( - 1 6 ‘h*u2),

since by definition

6* =  —b mod 2 a ! 

bm =  b mod 2o 2.

Therefore,

A  =  £  ea( - 1 6 ‘6*«2)e8(« )c “' ^ .
u = lm o d  4

Now, by Lemma 2 .1 .2 ,

Co( - 1 6 ‘6*«2) =  e16o( -6 * u 2)e16(a‘i - U2),
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and similarly

e0( — 16‘6t>2) =  ei6a(—̂ 2)ei6 (o‘tu2).

We leave to the reader to check the following simple lemma.

L em m a 2 .1 .4  For any odd integer n tve have

2
e16(n l) =  e18(n ) ( - ) ,  

n

and

By means of this last lemma and the fact that u, u =  1 mod 4, we find

and

e16(—a ‘6*ua)e8(«) =  e 18(a6 *)e8 ( l ) ( - )
a

=  e18(a 6 )e8 ( - l ) ( - ) .
a

Finally, using the identity

■ *i2
X  e' ^ T =  2  X ) e" ¥ r ’

n odd n =  1 mod 4

we arrive at

1 V d / 26w — 2a2b^ , t „vn +  6 + V —̂
2 ^ f (T K“^ _)C l6(a6  )0lo( 2a )e« ( a6) M  2a------

This completes the case where k> m  are even. As we mentioned above, the calcula

tions for fc, m  odd are similar, yielding the same term times (£). This finishes the 

proof of the Factorization Lemma. □
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C o ro lla ry  2.1.5 For d = 3 mod 8  we have

Z,(1;0,C ) =  O, 

and consequently, for  every tp € Cl{K)*,

=  0.

P roo f: It follows immediately from the Factorization Lemma just proved and 

Hecke’s formula (Theorem 1.2.6). □

R e m a rk : At least when d is a prime p, the last statement also follows easily from 

the fact, proved by Gross in [3, Th. 19.1.1], tha t the sign in the functional equation 

for L(s; is ( |) .

2.2 D efinition o f the invariants s and t

In this section we assume that d = 7 mod 8  and d ^  0 mod 3. We will define com

plex numbers ■s(C) and t(C)  for each class C € C l ( K ), using values of Dedekind’s 

e ta  function and the classical Jacobi theta  function 6l0, respectively. They will 

be related to the right hand side of the Factorization Lemma (Lemma 2.1.1). We 

will not make their dependence on the Hecke character tft explicit, since 0  is fixed 

throughout. Some im portant properties of these numbers are given in the next 

section.
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D e fin itio n  2 .2 . 1  Given a class C  €  C l ( K )  we take an ideal A  €  Tied n  G~x, and 

we define

*(C) =  e„(l)i,(f)W A)

and

t ( C ) =  e l6(h)el0( f) / rP(A),

where

A 1 = W \ l  + ^ =3]

for  some integer b (by Lemmas 1.2.2 and 1.2.3),

a - b +  V=el
T 2  a>

- ! ( r )  =  e f f '  1 1 ( 1 - 4 " )  >9 =
n > l

and

M O  =  E  C r  6  n .
n odd

Note th a t the definitions do not depend on the choice of £ since

ij(t +  11 =  e24(l)T)(T),

and

9io(t +  1 ) =  eg( l ) 0 io(V),

We will spend the rest of this section proving th a t the roots of unity  by which 7  

and Q%q change (8 th and 24th roots of unity, respectively) are under control.
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P ro p o s itio n  2 .2 . 2  s(C ) and t(C) are well defined.

P ro o f: As in the proof of Lemma 1.2.5, we will show later that it suffices to prove 

that the definition agrees on relatively prime ideals A ,  A ' € TZ&j that satisfy

A! A  = M

for some p E A.  In that case we choose p so that Mp >  0; this is possible because 

p is prime to i / —d.

The idea of the proof is that t  and r ',  corresponding to A  and A ' respectively, 

are related by an element of Sl?(Z) with controlled behaviour modulo 24. We can 

then apply the transformation formulas for rj and 0 iO to relate their correspond

ing values. Roughly speaking, s and t as functions of A  have weight zero: ij and 

6io have weight one-half, A  appears squared, so the total weight of the numera

tor is one, and ^  also has weight one. The crucial point is the computation of 

the quadratic symbol (^) (see below), which we will do in detail; we leave other 

computations to the reader.

Let a = N.A and a ' =  N .4'. By Lemmas 1.2.2 and 1.2.3, (p) € and

4 r  ̂+  y/—d)
A  = 1° ’ 2  1

for some integer b. Note that d =. 3 mod 4 implies that b must be odd; also, a is 

relatively prime to 2d. Since p E A ,  we get that p  =  m £(—b +  \ / - d )  +  na for 

some integers m  and n, which must be relatively prime because (p) is primitive.



Let c -  (41 +  d)j4a. It follows from d =  7 mod 8  that c is even, m is even and n 

is odd.

Also note that a, 6  are relatively prime since a is relatively prime to d  and 

b'2 — 4ac = d. It follows from Lemma 1.2.3 that b =  b + 2ar for some integer r, with 

br ~  — c mod a. It is now a straightforward, if tedious, calculation to show that

f  =  a3(7 r  +  8)

where

7  =  (2 an -  mb)m ( .
6 — n 3 +  2 rnm  — m 2(br +  c)/a. '  ‘ ’{

We can clearly choose b and r  so that b =  0 mod 3 and 6 >  0. We fix one 

such choice for the rest of this proof; it will simplify m atters when using the 

transformation formulas.

By Lemma 1.2.3, (p2) is primitive so 7  and 8 must be relatively prime. Observe 

that (7 , 6 ) =  (0,1) mod 8 . It is not hard to verify that modulo 3 there are 

two possibilities: (i) /*3 =  ± 1  mod 3 or (ii) p 2 =  ± \ / ^ 3  mod 3. (Recall that 

we assumed d ^  0 mod 3.) It follows that: (i) (7 , 6 ) s  (0, ±1) mod 3 or (ii) 

(7 , 6 ) =  (± 1 ,0 ) mod 3.

We can therefore find integers a  and 0  such that M  =  ^ ^  ^ ^ € 5 /j(Z ),

with M  =  ^ ^ j ^ mod 8 , and either Af =  ^ ^  i  1 )  mo^ ^ ' n case or

M  =  ^ *0̂  )  m0<* ^ ^  CaSC F>naliy» let

a f  +  0



21

We leave to  the reader to verify that

= y ^ 3 ]

and

- T- b  r f = r—
2 a'

where
C = (6 * +  d )/4 a 3

a ' 2 =  7 3c - M  +  « 2^ 2 (2 -2 )
9  =  ( 1  +  2 ^ 7 ) 6  — 2 ( 0 7 0  +  /?£a2).

Notice th a t 9  =  b mod 16 and also 9  =  0 mod 3 in both cases (i) and (ii).

We are now ready to  use the transform ation formulas.

T h e o re m  2 .2 .3  Let ^ ^  ^ ^ €  S l j (Z) with 7  even, 6  positive ('and odd), and 

t G H ,  7V(en

T?(̂ T 7 ) =

and

iv/iere

« =  3(5 -  1) +  *(/? -  7 ) -  (&2 ~  1 )7 «

and

p =  (2 a  +  1 ) ( 1  — 6 ) +  +  ( £ 2 — l ) 7 a .
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Here the square root is the usual branch with non-negative real part, and (^ ) 

is the usual Jacobi symbol, where it is understood that (2) =  + 1 .

P ro o f: See [12, pp. 126,131]. We have modified the notation slightly. □

Applying this theorem to our situation, we see that p = 0  mod 8  and k =  

0 mod 24 in every case. Also y/*yf +  6 =  p/a  because we have chosen > 0. We 

then have

*e4a(b')r}(Tf) -  ( f)

and

aeief&O^oCf') =  (^ )p e l6 (6 )0 lo( f ).

Combining this with properties of \j) we see that

and

eie(b)9io(f)/xl>(A) = (~g)£(p)ei6{&)8io(T*)/

Recall that e is the quadratic character on O k  defined in section 1.2. It satisfies

=  t{p)p.

As we said above, this is now the crucial point: we must prove that both signs 

cancel out. T hat is, we have to prove the identity

*00 = (f  )•
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For this, let m =  2,m/ with m ' odd. Then by (2.1),

( } )  =  ).

Now ( y /  =  +1 since j  =  1 mod 8 . Also 6 = n2 mod m'; so by the quadratic 

reciprocity law ) =  + 1 , Notice that 2 =  2 an — mb, and therefore

, 2 an — mb  
e{fi) -  (  j  )

(recall that d = 7 mod 8 , so ( j )  =  +1 ). Hence, it remains to prove that

t 2 an — mb^ ( 2 an — mb^
(  -  )  —  (  j  ) .

It follows from (2 . 1 ), after a short calculation, that

4 a26 = —dm3 + (2an — mfe)(4arm +  2an +  m i),

Again, write 2 an — mb  =  2(fc, where k  is odd (and positive because of our choice 

of fi). By the quadratic reciprocity law we obtain

, 2 an — mb^ _
1 6 ’ =

and therefore

(notice that 2 a is relatively prime to ifc). 

Similarly,

j2an — m b A ■d^
( 1 } = {T }
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and we are done.

It rem ains to reduce the general case to  the  one just proved. Let then, A ,  A '  € 

TZ-id H C~x. We can choose a th ird  ideal B  €  Ttid H C ~ l prim e to  the  norm of A A '  

and now apply the above case to  the pairs A ,  B  and A \ B .  This completes the 

proof of the  proposition. □

2.3 P rop erties o f  s and t

In this section we assume tha t d is a prime p  =  7 mod 8 . Recall th a t in section 1.2 

we defined a Hecke character of K  which takes values in an extension T f K  of degree 

k. We have fixed one of the h possible characters; in other words, we have fixed 

an embedding of T f K  in the complex numbers. Consider also a  fixed embedding 

of H,  the Hilbert class field of A", in C.

We let M  — T H ,  The above choices fix an embedding of A f/Q  in C. We 

let M + =  M f l R .  It is not hard to see th a t T  fl H  =  K  (see [1]). We may 

therefore identify C l ( K ) m with the embeddings of M f H  in C , the  trivial character 

corresponding to our fixed embedding. We will use the same le tter <p to denote the 

embedding corresponding to ip € C l ( K )*. Also, we may identify G a l(M fT )  with 

CI (K ) via the  Artin map. For a class C  € C l ( K )  we denote the  corresponding 

autom orphism  by oc-

We now summarize all the properties of the  invariants s and t that we will 

need.
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P ro p o s it io n  2.3.1 (i) s(C) and t (C )  are nonzero for  every class C.

(ii) =  s fC " 1) and

P ro o f: P art (i) follows from the fact that neither rj nor 0io vanish on the  upper-half

plane. P art (ii) is an easy consequence of the definitions. □

D e fin itio n  2 .3 .2  Let Cq denote the principal class. For every class C  we define

uc  = s (C ) fs (C 0)

and

V C  =  t{C)f t (CQ).

Note th a t by the above Proposition uc  and vc  are well defined.

T h e o re m  2 .3 .3  (i) uc  is a unit in M .

(ii) For any C , C ' and ip,

'  JXc =  Uc-i

I

=  <p{C)~xuc

u C '« c C,a =

(iii) Consider £ =  2  — oq and £ =  2 — <7d- i in the group ring Z[Gal(A//T’)], 

where D  =  [fi] and Q = [2, (1  +  —p)/2] is one o f  the primes o f  K  above 2. Then 

for every class C

vc  =  «c-

(iv) Properties (i) and (ii) also hold for  vc-



26

(v) The map

C l ( K ) —  (C W 2 0 m)*
C vc

is a homomorphism.

R e m a rk : The units uc  and vc  are a slight generalization of elliptic units and are 

similar to the ones in [1] a  id [4] (but there is a  clash of notation!).

P ro o f: Our claims are consequences of the Shimura reciprocity law. We will not 

need its full strength and hence we will use its more classical formulation. For this 

we will follow Deuring [2] and Stark [11]. We will also need some facts from Lang’s 

book [8 ]. We first set up some notation that we will use throughout this proof. As 

in section 2.2, for any ideal A  6  7£ep we write

A ,  _  [o> , 1 + ^ S ] .

We define

V IA )  =  e„(S  -  1 )vC b \ f ^ ) h C l+ / ^ )

and

I 'M )  =  e,.(S -  D M  ~ t  *

These are well defined because the right hand sides are independent of 6 . It is easy 

to see that

tiw  =  U { A ) M A )  (2.3)

and

-  V {A ) l$ {A ) .  (2.4)
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We now pick an ideal A  £ fl C~l and let a — N*4. By the Chebotarev 

density theorem there exists a prime ideal of degree one, C say, in 7Z«ap D C'~l . As 

before, we choose an odd integer 6  so that

•43 =

C3 = [!\ b +  f ^ i,

and

Here / =  N C and Q is the prime above 2 chosen in (iii).

We define a function on the upper-half plane by

- ( t \ n ( T / a i )

s ( r ) ■ w

It is an easy m atter to verify th a t

V ( A )  =  9 (Z ± L v ^ £ ) .

It follows from [2 , p. 14] and [8 , ch. 12-13] that g 6  (notation as in [8 ]), is 

fixed by upper triangular m atrices, has no poles (or zeros) in the upper-half plane, 

and has integral coefficients in its q-expansion a t every cusp.

We can now start with the proof. By [2, p. 41], U{A)  € O h  and {U(A))  =  

A O h ■ Also, i}>(A) €  O t  and (^£>(.4)) =  A Q t • Therefore, by (2.3), uc  is a  unit in 

M , proving (i).
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The first two properties in (ii) are easy. For the th ird , we apply (11, Th. 3] 

twice, using

C A '= \ ,a \ l- ± l E l ]

and

to get

Therefore,

C2A 2 = [l2a \
£t

U{Ayc* -  U(AC)/U(C).

Our claim now follows from (2.3).

To prove (in) we recall the classical formulas (see [1 2 , p. 114])

0 io(*) -  2ri(2r)2/ri(T)

and

C4s(1)t/(t) 3  =  »/(2 T)7 ( r / 2 )v((r +  l ) / 2 ).

Combining these, we obtain

Oto(r) =  2e2 4 ( l ) V( r ) 5 f?( r / 2 ) - :1»?(( r  +  l ) /2 ) " 2. (2.5)

Again by [11, Th. 3], if r  =  (—6 +  ^/—p)/2  then

j(r/2) = U(A)’°, (2.6)
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and also, after some calculation,

s ( ( t  +  «j )/2) =  C /M )'o - '. (2.7)

Now notice that

££ = 5 — 2ao — 2<rD- i , 

and so by (2.5), (2.6), and (2.7),

V (A )  = U(A)a . (2.8)

Our claim now follows from (2.3) and (2.4).

Part (iv) is a direct consequence of (iii), (ii) and (i).

Finally, we prove (v). It will be enough to show that

V (A )  s  1 mod 2 O h -

By the fundamental property of the Artin map, for any integer a  6  O h prime 

to 2 , we have

a* = 1 mod QOh > (2.9)

and

=  1 mod Q O h (2 .1 0 )

(recall that H j K  is abelian).

So now (v) follows from (2.8) by taking a  =  U ( A and a  = U ( A )f in (2.9)

and (2.10), respectively. (It is not hard to see that these numbers generate A  and,

in particular, they are prime to 2). This completes the proof of the theorem. □
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2.4 Formula for the L-series at a — 1

In thiB section we continue to assume that d is a  prime p =  7 mod 8 . Recall that 

k is odd when d is prime and hence every class is a square in Cl(K),

P ro p o s itio n  2.4.1 For any classes C ,C '  6  C l(K )  we have

6c »{C2) =  i /p t { C C ' ) t (C C ' -1).

P ro o f: It follows from the Factorization Lemma (Lemma 2.1.1) applied to squares 

of ideals, Lemma 2,1.4, and the definition of t. We leave the details to the reader. □ 

We can now combine this with Hecke’s formula (Theorem 1 .2 .6 ).

T h e o re m  2.4.2 For every class C € C l{K)  and every <p €  CI(K)*,

(0

i ( l ; ^ ,C a) = ¥,(CJ)-J: £  t{CC')HCC'-'),
VP c'eci(Af)

(»)

i ( l ; ^ )  =  - ^ [  £  * C ) i ( 0
VP \ceCf(*o

and

(in)
h r

£L(l;v>V-) = - = £ | i ( C ) | J.
v VP c

P ro o f: Recall that every class is a square. Part (i) follows directly from Propo

sition 2.4.1 and Hecke’s formula (Theorem 1.2.6). Part (ii) follows from (i) after
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a change of indices in the  sum. P art (Hi) follows from (ii) by expanding the right 

hand side and summing over □

C o ro lla ry  2 .4 .3  For p  €  C l ( K ) m, let

L M = —  i ( c j r

and

‘ M  =  S > ( C > c .
C

Then for  every C  € C l ( K )  and p , p f € C l ( K ) m, ure have

(i)

L { p f °  =  Vcl L(<p),

(H)

L & y '  =  L(p 'p ) ,

and

(Hi)

L(v )  =  '(v>)2-

Moreover, l (p) is a nonzero integer in (A/+ )<*; in particular

L ( >  0.

R e m a rk : T hat L(l;pip)  is positive was first proved by Rohrlich in a different way 

(see [10]). Regarding the integrality of L(p),  compare [5, cor. 3.2].
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P ro o f: P arts (i) and (ii) follow easily from the properties of t given in Theo

rem 2.3.3. The first identity in (iii) follows from part (ii) of the  theorem. It is 

clear that t(<p) is an integer in M  fixed by complex conjugation. It is also clear 

th a t each L(tp) is a  non-negative real number. To see th a t it is actually positive, 

observe th a t by part (iii) of the  theorem, L(<p) is positive (we have shown in 

Theorem 2.3.3 tha t t ( C ) is never zero). On the  other hand, by part (ii) of this 

corollary, if one of the summands is zero, they all are. We conclude th a t L( 1; <^0) 

is positive for all (p. □

R e m a rk : Let us note tha t vc, and therefore t(<p), remains unchanged if we re

place t by — (. In particular the sign of l(<p) is uniquely determined. Interestingly, 

not all of these signs can be the  same. To see this, note that

E  '(*>) = k

and

X ^ v O * *  AX M a*c

Therefore

r X -  * -  X M 2-
n  v * * 1 C

A crude estim ate using the definitions (left to the  reader) shows th a t jucl — 1 for

every class C.  Hence, the right hand side is negative and, in particular, not all of

the l(<p) can have the same sign.



C H A P T E R  III

A pplications

3.1 T h e curve A (p)

Throughout this section we assume that d is a  prime p  =  3 mod 4. Following 

Gross we consider the elliptic curve A(p) and sta te  some of its properties. For 

details and proofs we refer the reader to Gross’ work in [1 ], [3], and [4].

We let j  = j ( ( l  +  \ / —p)/2) where j ( r )  is the  classical m odular function. It is 

easy to check th a t j  is real. We let F  =  Q O ). We have then, th a t F (Q  is an 

extension of degree h with a fixed embedding in the real numbers, and H  = F K  

is the Hilbert class field of K.

We define the elliptic curve A{p) over F  by the W eierstrass equation

tlj _  j x mP r
V 243 2533’

where m  and n are in F  and satisfy

m 3  =  j ,

- n 2p = j ~  1728,

33



34

and

sign(n) =  (^ ).
P

We let w =  ^  be the  differential associated to  this model; it is straightforward to 

check th a t A(a>) =  —p3.

The only primes of bad reduction for A(p) are the primes dividing p. In F  we

have

(p) -  v0v? • ■ • Vl,

where h! =  (A — l) /2 . The type of reduction for each of these primes is given 

explicitly by Gross in [3, 14.1]. For our purposes it is enough to know the value of 

m the  num ber of connected components of the Neron model of A(p)  a t v th a t are 

rational over the  residue class field. These are as follows: (i) for i> =  Fo, =  2, 

and (ii) for v = Vi (i =  1, 2 , . . . ,  h '), m„ =  4.

We note in passing th a t from the above factorization of p and the fact that no 

other prim e ramifies in H j Q, it follows easily that the  discriminant of F f  Q is ph‘.

The torsion subgroup of ^4(p) over F  is of order 2 and /4(p)( F ) has rank zero 

when p =  7 mod 8 .

The curve A(p) over H  has complex m ultiplication by O k and its associated 

Ilecke character is ip o N///*-, with if? being the Hecke character defined in sec

tion 1.2. It follows tha t the L-series of A(p) over F  factors as

L{a-,A(p)/F)= n  H ’ W*)-  (3.1)
*eci(K>*
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3.2 Form ula for th e  square root o f  th e  pred icted  order o f  
th e  T ate-Shafarevich group

In this section we assume that d is a  prime p = 7 mod 8 . We will put our formula 

for the L-series at s = 1 (Theorem 2.4.2) together with the calculation of all the 

factors involved in the Birch-Swinnerton Dyer conjecture to  obtain a  formula for 

the  square root of the predicted order of the Tate Shafarevich group of A(p)  over 

F.  We will be able to show that this number is in fact an integer. Our formula 

gives a specific choice of sign for this square root, which seems very interesting.

For the setting up of the Birch-Swinnerton Dyer conjecture we follow Manin 

(see [9, sec. 8 ]). In section 3.1 we already have m ost of the term s: we know 

the order of the torsion, the discrim inant of F f  Q , and the m„’s corresponding to 

primes of bad reduction. We also have a formula for the  value of the  L-series of 

A(p) at s = 1 ; namely

Hl - ,A (p ) / F )  = ( - ? - ) [  n  £  *»(CWC)
\  VP/ C€Ct(K)

obtained by combining Theorem 2.4.2 (ii) with (3.1). It remains to  com pute m v 

for the  archimedean primes of F,

As in section 2.3, we identify the  Galois group of H ( K  with the  class group

C l ( K )  via the Artin map. We pick representatives Ai  €  72. for i =  0, 1 , . . . ,  h'

(here, as before, h ' =  (h — l ) / 2 ) such that

Cl ( K)  =  { [A ], [A ], • • • [A .], Ml]-1....... Mv]-1}.
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where [.4] denotes the class of A  in C l{K ) .  We choose A q =  O k - 

By Lem m a 1.2.2 we can write

for t =  0 , . . . ,  A', where o, =  N 4 ,. We let r,* =

Corresponding to .4,- we have an em bedding of F  in the  complex numbers which 

we will denote by <r, . For i = 0 we have our chosen real em bedding of F,  and for 

i — 1 , . . . ,  A' we have pairwise nonconjugate complex embeddings.

Recall th a t a? is the  differential form on 4 (p ) defined in section 3.1. It is not 

hard to see th a t the lattice of periods of uiai is fl^[l,T;], for some fL, which is real for 

i =  0, and complex for t =  1 , . . . ,  A'. Since A(u?"') =  —p3  for every * =  0 , 1 , . . . ,  A\ 

we obtain
O—

|n,-| = M?;)!2,
</p

where ij is Dedekind’s e ta  function.

Using now the formulas in [9] it is not hard  to verify that:

(i) for v = <t0,

m v =  ~  | t / ( t o ) | 2 ,
i /P

(ii) for v = ai and t =  1 , . . . ,  A',

We need one more fact.
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L em m a 3.2.1 With the notation as above, we have the identity

i7 (7„ ) i n M # =  n  ‘(c ) .
.=i v a * cec/(/C)

P roo f: This follows from Theorem 2.3.3. We leave it to the reader. □

T h eo re m  3 .2 .2  We denote by S(p) the order o f  the Tate-Shafarevich group of  

A{p) over F  as predicted by the Birch-Swinnerton Dyer conjecture. We have the 

formula

/T T \ 1 n̂ €cj(y>» H cschk) <fi(C)t(C)
V {P) ~  V ' 1 UctciiK) UC)

R e m a rk : We should understand the right hand side as giving a specific choice of 

sign for the square root. This sign remains the same if we replace t by —t.

P roo f: It amounts to putting together all the terms calculated above into the 

Birch-Swinnerton Dyer conjecture, as given for example by Manin (see [9, sec. 8 ]). 

We leave this to the reader. D

C o ro lla ry  3 .2 .3  The number S(p) is the square of  a nonzero rational integer.

P ro o f: That S(p)  is nonzero follows from Corollary 2.4.3 (iii). By dividing nu

merator and denominator by t(Co)h (here again, Cq denotes the  trivial class) we 

can rewrite the formula as

/ 7 7 T ___ 1 rk E c y » (C > c
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where vc  = t(C)/t(Co)  are the units defined in section 2.3. This already shows that 

*S(p) is an algebraic number with a t most powers of two in the denominator. We 

need to prove: (i) \ /S(p)  is a rational number, and (ii) 2h~1 divides the  numerator.

(i) To show 'JS(p)  is a  rational number, we check its behaviour under the 

action of G al(Q /Q ). For this we use the various properties of t described in 

Theorem 2.3.3.

(a) Both num erator and denominator are fixed by complex conjugation since

we have y?(C) -  v (C ~ l ) and t (C )  =

(b) Under the action of for any class C  £ C l ( K ) ,  the num erator changes 

by a factor of Vph fl* denominator by v ^ 11. Since C l ( K ) m is of odd 

order, it follows that yJS(p) remains fixed.

(c) Under the action of <p, for any tp £ C7(/v )*, the  num erator remains fixed 

and the denominator changes by a  factor of f lc  V?_1(^ )-  Again, since C t ( K ) is of 

odd order, yfS(p)  remains fixed.

This shows th a t y^S(p) is a  rational number.

(ii) To show that 2* - 1  divides the num erator in th e  formula for yfS(p), let

M r =  A/(00> where is a prim itive Ath root of unity. Let Q be any prim e of M ’

above 2. It follows from Theorem 2.3.3 (v) that the m ap

c i ( K )  —  ( e w e r
C  ♦ Vc

is a homomorphism. Therefore, A — 1 of the factors in the  num erator are divisible
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by Q, the remaining factor being congruent to ft mod Q. This is enough for our 

purposes, but note th a t ft is odd so tha t exactly ft — 1 of the factors are divisible by 

Q. We conclude th a t 2h~l divides the  num erator, since 2  is unrami lied in A /'/Q - 

This completes the proof of the Corollary. □
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