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In 1899 Hurwitz [4] defined analogues of the Bernoulli numbers for imag-
inary quadratic fields and proved that they satisfy a congruence similar to
that of Clausen-von Staudt for the ordinary Bernoulli numbers. These so-
called Bernoulli-Hurwitz numbers are essentially values of integral weight
Eisenstein series on the full modular group and the congruences can be ex-
pressed entirely in terms of these series [3], [5]. In this note we would like
to give the analogous congruences of Clausen-von Staudt and Kummer for
half-integral weight Eisenstein series.

We consider only the simplest case: that of the series H, +1 (k > 2)
introduced by Cohen [2], which are a linear combination of the two Eisenstein
series of weigth k 4 3 on Tg(4). They have the following g-expansions

HH%(Z) = Z H(k,n)q", q=e"* ¥(z) >0, (1)

n=0
where H(k,n) = L(1—k, (—=1)kn) and L(s, D) is an L-series defined as follows.
For D =0, L(s,0) = ((2s—1). For D # 0, L(s, D) is identically zero unless D
is a discriminant (i.e. D =0 or 1 mod 4), and in that case write D = Dy f?,

where Dy is the discriminant of Q(v/D) (allowing also the split case Dy = 1)
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and f > 1, then

HoD) = L S o (), ®
n=1 dlf

where g is Moebius function, (£2) is the Kronecker symbol, and o,(n) =

E:dmff/(y € C».

We need to introduce some notation. Let

9:an2:1—|—2q—|—2q4+---, q=e" $(z) >0,
neZ

F = Z o1(n)q" = q+4¢> +6¢° - - -,
n>1,0dd

(forms on I'g(4) of weights % and 2 respectively), and

t:éz:q—8q2+44q3—192q4---
(a Hauptmodul for T'y(4); it is related to the more familiar parameter A for
I'(2) by AM(2z + 1) = 16t(2)).
The forms 6 and F' generate a ring of modular forms on ['y(4) containing
all forms H; 1 with k > 2 (see [2]). Since the coefficients of Hy.q1 are
rational there 1s a polynomial @, +1s with rational coefficients and degree at

most k/2, such that
1
2 -t =0y (). (3)

A0 =Y ( 2;”‘ )t (4)

This polynomial is related to Hasse invariants of elliptic curves modulo p.
Precisely, for A # 0,1 in Z/pZ, the number of points of the elliptic curve
y* = x(x —1)(x — \) over Z/pZ is congruent, modulo p, to 1+ (—1)%14],(15),
where A\ = 16t mod p.

We can now state the Clausen-von Staudt and Kummer congruences.



Theorem Let p be an odd prime, k > 2 an integer, A, as in (4), and
Ppy1 € Q|[t] the polynomial defined by (3).

(1) If p—1 divides 2k then the coefficients of p - <I>k+% are p-integral, and

kp
POy = Ap~™ mod pZ,]t],

where
b k if k=0modp—1
Pl k—3p-1) ifk=Etmodp—1 "

(2) If p—1 does not divide 2k then the coefficients of @H%/k are p-integral,
and

‘I)k+p_%/(k +p—-1)=A4,- CI>k+%/k: mod pZ,[t].

Remarks (1) By choosing p = 3 in (1) above we see that ® 1 has degree
[k/2]. As was pointed out to us by J. Sturm, this would also follow from
analyzing the behaviour of H, +1 0 and F at the cusps.

(2) The Theorem gives no more p-adic information about the values of the
L-series L(s, D) than was put into it and as we will see next, this amounts
to the classical Clausen-von Staudt and Kummer congruences.

(3) The function ¢ is holomorphic on the upper-half plane and has p-
integral coefficients at every cusp for each odd prime p. It follows that for a
CM point z, t(2p) is an algebraic number, integral outside primes dividing

2. We can therefore translate the congruences of the Theorem to the values
2k - Hk+%(zo)/9(zo)2k+1 as in Hurwitz.

Proposition Let k > 2 be an integer, p an odd prime, and ch+% the
modular form defined by (1).
(1) If p—1 divides 2k then the coefficients 0fp-2k~7'(k+% are p integral and

P2k Hyyy = 0% mod pZy[[q]],

where
. {1 if k=0modp—1
k p—

D z'sz%modp—l '



(2) If p—1 does not divide 2k then the coefficients of ’HH% are p-integral
and

Hipsp-1 = Hypr mod pZ,|[q]].

Remark More general statements like (2) above allow one to define p-adic
limits of the forms H, 1, see [6].

Proof The classical Clausen-von Staudt and Kummer congruences for gen-
eralized Bernoulli numbers imply the following. Let D be a fundamental dis-
criminant (allowing also D = 1) or D = 0, and k& > 1. If p—1 divides 2k then
2k-L(1—Fk, D) is p-integral unless: (i) D = (%)p and k = %(p— 1) mod p—1,
(ii)) D = 1 and k = 0 mod p—1, or (iii) D = 0. In those cases, p-2k-L(1—k, D)
is p-integral and

(1) p-2k-L(1— ,(%)p = 2modpZ, k = i(p—1)modp—1
(i1) p-2k-L(1—k,1) = 2modpZ, k = Omodp-—1
(i1) p-2k-L(1—k,0) = 1lmodpZ, 2k = Omodp—1.

If p — 1 does not divide 2k then L(1 — k, D) is p integral and
L(1—(k+p—1),D)=L(1 - k,D) mod pZ,.

Therefore, according to the definition (2), all that remains to be proved
is that for any f > 1, £ > 1, and Dy a fundamental discriminant the number

f
=3 uld)(ZH)d oo (%),
T, d d

which is clearly an integer, is congruent to 1 modulo p for cases (i) and (ii)
above, and that in general ¢;(k+p—1) = ¢f(k) mod p. The last congruence
is clear; to prove the first, consider the Dirichlet series

< (= (B
Z cr(k)f~° = H (1—1—5)(1 — [Zk—1=s)

f=1 1

For cases (i) and (i ) it is easy to check that each Euler factor is formally con-
gruent to (1 —77%)~! and hence ¢;(k) = 1 mod p for every f. This concludes
the proof. O



Proof of the Theorem At this point, we could argue as in Katz [5];
we prefer to give a proof along more classical lines like [1] and [3].
Since 6 is a unit in Z,[[g]] the Proposition implies that

prPpa(t) = 0~ mod pZ,[[q]], 2k =0 mod p — 1, (5)
and
<I>k+p_%/(k‘+p—1) = 92(1_p)-<13k+%/k mod pZ,[[q]], 2k # 0 mod p—1. (6)

Recall that t = 954 = q — 8¢* + 44¢> - - - . Following Abel’s advice we for-
mally invert the relation between ¢ and ¢ and regard (5) and (6) as identities
between power series in Z,[[t]]. We now use the following remarkable identity
expressing 62 explicitly as a power series in ¢

2
11 o
92:F(2,2;1;16t):§:<2:> t" =144t +36t%---,
n=0

(here F'is the standard hypergeometric function). This is a classical formula
of Jacobi, see for example [7, p. 486].

Take k = k, = p—1in (5); we know that &, 1is a polynomial of degree
at most (p — 1)/2 so

o1 (r—1)/2 m 2
p-®, 1=90 (1-p) = HZ::O < . > t" mod p - Z,|[t]].
Therefore,
kp_
PPz = A}~ mod p-Z,[t], 2k =0mod p — 1,
and
<I>k+p7%/(k+p—1) EAPWI)H%/kmodp-Zp[t], 2k Z0mod p — 1,

which is what we wanted to prove. O
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