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In 1899 Hurwitz [4] defined analogues of the Bernoulli numbers for imag-
inary quadratic fields and proved that they satisfy a congruence similar to
that of Clausen-von Staudt for the ordinary Bernoulli numbers. These so-
called Bernoulli-Hurwitz numbers are essentially values of integral weight
Eisenstein series on the full modular group and the congruences can be ex-
pressed entirely in terms of these series [3], [5]. In this note we would like
to give the analogous congruences of Clausen-von Staudt and Kummer for
half-integral weight Eisenstein series.

We consider only the simplest case: that of the series Hk+ 1
2

(k ≥ 2)

introduced by Cohen [2], which are a linear combination of the two Eisenstein
series of weigth k + 1

2
on Γ0(4). They have the following q-expansions

Hk+ 1
2
(z) =

∞∑
n=0

H(k, n)qn, q = e2πiz, =(z) > 0, (1)

where H(k, n) = L(1−k, (−1)kn) and L(s, D) is an L-series defined as follows.
For D = 0, L(s, 0) = ζ(2s−1). For D 6= 0, L(s, D) is identically zero unless D
is a discriminant (i.e. D ≡ 0 or 1 mod 4), and in that case write D = D0f

2,
where D0 is the discriminant of Q(

√
D) (allowing also the split case D0 = 1)
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and f ≥ 1, then

L(s, D) =
∞∑

n=1

(
D0

n
)n−s ·

∑
d|f

µ(d)(
D0

d
)d−sσ1−2s(

f

d
), (2)

where µ is Moebius function, (D0

· ) is the Kronecker symbol, and σν(n) =∑
d|n dν (ν ∈ C).
We need to introduce some notation. Let

θ =
∑
n∈Z

qn2

= 1 + 2q + 2q4 + · · · , q = e2πiz, =(z) > 0,

F =
∑

n≥1,odd

σ1(n)qn = q + 4q3 + 6q5 · · · ,

(forms on Γ0(4) of weights 1
2

and 2 respectively), and

t =
F

θ4
= q − 8q2 + 44q3 − 192q4 · · ·

(a Hauptmodul for Γ0(4); it is related to the more familiar parameter λ for
Γ(2) by λ(2z + 1) = 16t(z)).

The forms θ and F generate a ring of modular forms on Γ0(4) containing
all forms Hk+ 1

2
with k ≥ 2 (see [2]). Since the coefficients of Hk+ 1

2
are

rational there is a polynomial Φk+ 1
2
, with rational coefficients and degree at

most k/2, such that

2k ·
Hk+ 1

2

θ2k+1
= Φk+ 1

2
(t). (3)

Finally, for odd primes p let

Ap(t) =
(p−1)/2∑

n=0

(
2n
n

)2

tn. (4)

This polynomial is related to Hasse invariants of elliptic curves modulo p.
Precisely, for λ 6= 0, 1 in Z/pZ, the number of points of the elliptic curve

y2 = x(x− 1)(x−λ) over Z/pZ is congruent, modulo p, to 1+ (−1)
p−1
2 Ap(t),

where λ ≡ 16t mod p.
We can now state the Clausen-von Staudt and Kummer congruences.
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Theorem Let p be an odd prime, k ≥ 2 an integer, Ap as in (4), and
Φk+ 1

2
∈ Q[t] the polynomial defined by (3).

(1) If p− 1 divides 2k then the coefficients of p · Φk+ 1
2

are p-integral, and

p · Φk+ 1
2
≡ A

kp
p−1
p mod pZp[t],

where

kp =

{
k if k ≡ 0 mod p− 1
k − 1

2
(p− 1) if k ≡ p−1

2
mod p− 1

.

(2) If p− 1 does not divide 2k then the coefficients of Φk+ 1
2
/k are p-integral,

and
Φk+p− 1

2
/(k + p− 1) ≡ Ap · Φk+ 1

2
/k mod pZp[t].

Remarks (1) By choosing p = 3 in (1) above we see that Φk+ 1
2

has degree

[k/2]. As was pointed out to us by J. Sturm, this would also follow from
analyzing the behaviour of Hk+ 1

2
, θ and F at the cusps.

(2) The Theorem gives no more p-adic information about the values of the
L-series L(s, D) than was put into it and as we will see next, this amounts
to the classical Clausen-von Staudt and Kummer congruences.

(3) The function t is holomorphic on the upper-half plane and has p-
integral coefficients at every cusp for each odd prime p. It follows that for a
CM point z0, t(z0) is an algebraic number, integral outside primes dividing
2. We can therefore translate the congruences of the Theorem to the values
2k · Hk+ 1

2
(z0)/θ(z0)

2k+1 as in Hurwitz.

Proposition Let k ≥ 2 be an integer, p an odd prime, and Hk+ 1
2

the

modular form defined by (1).

(1) If p−1 divides 2k then the coefficients of p ·2k ·Hk+ 1
2

are p integral and

p · 2k · Hk+ 1
2
≡ θek mod pZp[[q]],

where

ek =

{
1 if k ≡ 0 mod p− 1
p if k ≡ p−1

2
mod p− 1

.
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(2) If p − 1 does not divide 2k then the coefficients of Hk+ 1
2

are p-integral
and

Hk+p− 1
2
≡ Hk+ 1

2
mod pZp[[q]].

Remark More general statements like (2) above allow one to define p-adic
limits of the forms Hk+ 1

2
, see [6].

Proof The classical Clausen-von Staudt and Kummer congruences for gen-
eralized Bernoulli numbers imply the following. Let D be a fundamental dis-
criminant (allowing also D = 1) or D = 0, and k ≥ 1. If p−1 divides 2k then
2k ·L(1−k, D) is p-integral unless: (i) D = (−1

p
)p and k ≡ 1

2
(p−1) mod p−1,

(ii) D = 1 and k ≡ 0 mod p−1, or (iii) D = 0. In those cases, p·2k·L(1−k,D)
is p-integral and

(i) p · 2k · L(1− k,
(
−1
p

)
p) ≡ 2 mod pZp, k ≡ 1

2
(p− 1) mod p− 1

(ii) p · 2k · L(1− k, 1) ≡ 2 mod pZp, k ≡ 0 mod p− 1
(ii) p · 2k · L(1− k, 0) ≡ 1 mod pZp, 2k ≡ 0 mod p− 1.

If p− 1 does not divide 2k then L(1− k,D) is p integral and

L(1− (k + p− 1), D) ≡ L(1− k,D) mod pZp.

Therefore, according to the definition (2), all that remains to be proved
is that for any f ≥ 1, k ≥ 1, and D0 a fundamental discriminant the number

cf (k) =
∑
d|f

µ(d)(
D0

d
)dk−1σ2k−1(

f

d
),

which is clearly an integer, is congruent to 1 modulo p for cases (i) and (ii)
above, and that in general cf (k + p− 1) ≡ cf (k) mod p. The last congruence
is clear; to prove the first, consider the Dirichlet series

∞∑
f=1

cf (k)f−s =
∏
l

(1− (D0

l
)lk−1−s)

(1− l−s)(1− l2k−1−s)
.

For cases (i) and (ii) it is easy to check that each Euler factor is formally con-
gruent to (1− l−s)−1 and hence cf (k) ≡ 1 mod p for every f . This concludes
the proof. 2
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Proof of the Theorem At this point, we could argue as in Katz [5];
we prefer to give a proof along more classical lines like [1] and [3].

Since θ is a unit in Zp[[q]] the Proposition implies that

p · Φk+ 1
2
(t) ≡ θ−2kp mod pZp[[q]], 2k ≡ 0 mod p− 1, (5)

and

Φk+p− 1
2
/(k+p−1) ≡ θ2(1−p)·Φk+ 1

2
/k mod pZp[[q]], 2k 6≡ 0 mod p−1. (6)

Recall that t = F
θ4 = q − 8q2 + 44q3 · · · . Following Abel’s advice we for-

mally invert the relation between t and q and regard (5) and (6) as identities
between power series in Zp[[t]]. We now use the following remarkable identity
expressing θ2 explicitly as a power series in t

θ2 = F (
1

2
,
1

2
; 1; 16t) =

∞∑
n=0

(
2n
n

)2

tn = 1 + 4t + 36t2 · · · ,

(here F is the standard hypergeometric function). This is a classical formula
of Jacobi, see for example [7, p. 486].

Take k = kp = p− 1 in (5); we know that Φp− 1
2

is a polynomial of degree

at most (p− 1)/2 so

p · Φp− 1
2
≡ θ2(1−p) ≡

(p−1)/2∑
n=0

(
2n
n

)2

tn mod p · Zp[[t]].

Therefore,

p · Φk+ 1
2
≡ A

kp
p−1
p mod p · Zp[t], 2k ≡ 0 mod p− 1,

and

Φk+p− 1
2
/(k + p− 1) ≡ Ap · Φk+ 1

2
/k mod p · Zp[t], 2k 6≡ 0 mod p− 1,

which is what we wanted to prove. 2
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