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Square roots of central values of Hecke L-series

Fernando Rodriguez Villegas and Don Zagier

Princeton University
and
Max-Planck-Institut fiir Mathematik, Bonn

§1. Introduction

In [2] numerical examples were produced suggesting that the “algebraic”
part of central values of certain Hecke L-series are perfect squares. More

precisely, let #; be the grossencharacter of Q(+/=7) defined by

ﬂliu}q—_{mja if a=(a), a:—%—ﬁ__TEE[E—-F—E—F?]

and consider the central value L{¢7 "', k) of the L-series associated to an
odd power of yy. This value vanishes for &k even by virtue of the functional
equation, but for k odd one has

o1 gy _ o (2E/VTYE Q2R _ T(2T(3)T(3)
[1} LI:"J!".I ,k:l =2 {.l: — l]r A[k:l 1= 411_2 i
with A(1) = 1 A(3) = A(5) = 1, A(T) = 9, A(9) = 49, ..., A(33) =
447622863272552, suggesting the conjecturs
. E(y2k=1
© sty 2 2 B AT gy,

with B(1) =1 and B(k) € Zfor all k > 3.

In this paper we will prove this conjecture and analogous results for
other grossencharacters. The method will be a modification of the method
of [8], where it was shown that the central values of weight one Hecke L-
series are essentially the squares of certain sums of values of weight 1/2
theta series at CM points. The new ingredient for higher weight is that we
have to use (non-holomorphic) dertvatives of modular forms. For instance,
the value of B(k) in (2} will turn out to be essentially the value of a certain
derivative of

(3) B12(2) = Z g¥inie/4 (2 € H = upper half-plane)

il
n odd

&1



B2 Square roots of central values

at z = (1+ i/7)/2. Because the derivatives cf modular forms can be
computed recursively, this leads to a simple recursive formula for the spe-
cial values of Hecke L-series and their square roots. In particular, for the
example above the result is:

Theorem. Define sequences of polynomials aan(z), bpy(z) by the recur-
sions

nt1(2) = T+ T = 278) (2 72 = 2240 0, (2)
ﬂi
(4) - 2 (1= 52) ans(a)
91 bns1(z) = ((32nz — 56n + 42) — (z — 7)(64z — 7) EEE} ba(z)
(5) - 2n(2n = 1) (112 + 7) by_y(z)

“with initial conditions ag(z) = 1, a1(z) = =L /(1 — z)(1 + 27z), bg(z) =
1/2, by(z) = 1. Then the values A(2n + 1) = az,(—1)/4 and B{2n + 1) =
bn(0) satisfy equations (1) and (2).

For numerical values of the first few as.(z), ba(z), and B(k), see §7. Sur-
Pl'isinsly, there seems to be no simple direct proof of the identity aga{—1) =
4b,(0)*!

We mention briefly several applications of the theorem. First, it gives
us a specific choice of the square root of the numbers A(k) occurring in (1).
Now it is well-known that the existence of a p-adic L-function imply that
the squares A(k) satisfy congruences modulo certain prime powers, and it
has been conjectured [4] that there should be analogous p-adic interpolation
properties for appropriately chosen square roots. Testing this on the square
roots produced by the theorem, we do indeed find that these satisfy certain
congruences of the desired type, e.g.

(6) B(k)=—k (mod4), B(k+10)=7B(k) (mod11) (k> 3).

This is the topic of a forthcoming thesis by A. Sofer. Notice, by the way,
that either of the congruences (6) implies the non-vanishing of L{y3*~1, k),
which is not a priori obvious.

The second “application” is that one can compute the numbers A(k)
and B(k) much more easily than was previously possible. The methoad of
computation in [4] was to compute L(y2*~! k) as

n=1

L= k
PILLOIIC Spand
j=0 " s
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where L(y3F~1 5) = i at' n=*, but this becomes unmanageable for large
=

k. The recurrences are 1ea.aie: to work with and can also be used to com-
pute the numbers in question modulo high powers of a prime p, without
computing the numbers themselves, which grow very rapidly. This is useful
both for testing the above-mentioned conjectures of Koblitz and in connec-
tion with a beautiful recent result of Rubin [6], proved by him module the
Birch-Swinnerton-Dyer conjecture, which gives a transcendental construc-
tion of points on certain elliptic curves via p-adic interpolation of values of
Hecke L-series.

The third application is that the central values of the L-series under con-
sideration are always non-negative, which in turn by a remark of Greenberg
implies a result on their average value (cf. Corollary in §5 and the following
comments).

In a different direction, it was also found in [2] that the values of

the twisted L-series L(y3¥~!, [;]1 5} = Efﬂ[%} ah) g=s {(p =1 (mod 4)

prime) at s = k were again essentially perfect squares:

3+ {E) k=1 k-1
1 /2 ][k “{?}iﬁ} B(k,p)*;

The well-known theorem of Waldspurger, of course, tells us that the cen-
tral values of the twists of the L-series of a given modular (Hecke eigen)
form f are essentially square multiples of one another, the square-roots be-
ing proportional to the Fourier coefficients of the half-integral weight form
attached to f by the Shimura lifting, but it does not tell us the values
themselves. In §8 we propose a formula for the numbers B(k, p) which
when combined with Waldspurger's theorem may eventually give an ex-
plicit formula for the coefficients of the Shimura lifting of a modular form
attached to a grossencharacter.

The main result of this paper (like that of [8]) involves a “factorization
formula™ which expresses the value (or derivative) of a weight one theta
series at a CM point as a product of values (or derivatives) of weight 1/2
theta series at other CM points. This formula will be proved in §4, while
§5 gives the application to grossencharacters and §§6-7 describe recurrence
relations like the ones in the sample theorem above.

The first author was partially supported by NSF grant 2156272. He
would also like to thank the Max-Planck-Institut fiir Mathematik, where
part of this work was done.
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§2. Derivatives of modular forms
The differential operator



84 Square roots of central values

maps holomorphic functions to holomorphic functions and functions with
a Fourier expansion of ths form 3 a(n)g¢" to functions with a Fourier
expansion of the form 3 na(n)¢® and with Fourier coefficients in the same
field, but it destroys the property of being a modular form. As is well-
known, this can be corrected by introducing the modified differentiation

operator

k
Eik_D—m

which satisfies du(fliv) = (8 f)|es27 for all ¥ € SLa(R), where as usual

. b . : -
fh:[? j](z] = (ez +d‘j—"f(::::d]- In particular, if ' C SLy(R) is
some modular group and M} (T') denotes the space of differentiable modular
forms of weight k on I', possibly with some character or multiplier system
v (i.e., of f satisfying flay = v(v)f for all ¥ € T), then 8 f belongs to
M; ;2(T) and more generally 8} f to M} ., (T), where

8! = Brszh-20Ots2n-q0.. .08 42008, .

In this situation we will often drop the subscript and write simply 8" f for
uﬁ'#f , since f determines its weight & uniquely.
An easy induction shows that

h
R o_ Ii'l) F{h = k]’ -1 h=y :
®) =3 (5)rm Gy
In particular,

(9) a;;(f: a[n}ezﬂ'“*) = A iﬂ{n] Ly~ (4mny) e*™i®

i
n=@ {4#1;) n=0

where
" h+a) (=z)
(10) L§(z) = ;ﬂ (h _j) = (h € Zso,2 € C)
denotes the h-th generalized Laguerre polynomial In the special case & =
1/2 we have the identity L, '/?(2) = (—=1/4)* Hau(+/7)/A!, where
I . s
(1) Hp(2)= > .—rt-—:‘]_—-g—jr{—lji{isz & (p € Z30)
ogizpre? P T AN

1s the pih Hermite polynomial. In particular, the non-holomerphic deriva-
tives of the weight 1/2 theta series B2 defined in (3) are given by
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1 in
"8y 2(2) = 67g) z Hap(ny/7yf2) e™in’2/4
(16xy)*

n add

A similar calculation applies to the weight 3/2 theta series

(12) Baja(z) = 3 (=) memin™si (2 € H)

n=]1

and shows that the Fourier expansions of the functions Bot1/2 (P € Z3a)
defined by

Eh ﬁfﬂé‘”g[z} if = Eh, h E 0
(13) bparja(z) =9 _, ., :

B O3,485p2(2) ifp=2h+1,h20

can be given by the uniform formula

1 ‘—":I: F . 9
{141 ﬂp+]l,!2|:2} = EE—:H-"-'"E E [?} flrp{n .-"ﬂ.yr;ﬂjerm z/4 )
Ty "1
n odd

We remark that the holomorphic theta series defined by (3) and (12) can be
expressed in terms of the Dedekind eta-function n(z) = e¥i=/12 TT(1—e?7ins)
as

> 2
I:l-ﬁ:l E”g{z} = nf}?z%: ¥ EE-,I"'I("T] = ﬂ{:]a'

Finally, from (8) and the binomial theorem we immediately get the
identity

a1 Y _Th+k) —lmidny 1
(16) a*(m)“ I'(k) fq,ym“:’ Amz + n)t

which will be used in the next section to express the values of Hecke L-series
at critical points as values of non-holomorphic derivatives of holomorphic
Eisenstein series at CM points.

§3. L-series and Eisenstein series

From now on we fix the following notation: K is an imaginary qua-
dratic field of odd discriminant —d, O its ring of integers, 0 = (+/—d) its
different, and Cly its class group. We suppose d # 3 so that (%, = 1x1};
later we will also suppose that d is prime to aveid complications due to

—d o
genus characters. We denote by e(n) = {?} = {S} the Dirichlet charac-

ter associated to . We can extend it via the isomorphism Z /d — /0



86 Sgquare roots of central values

to a quadratic character of K of conductor 2. (Explicitly, we can write any
# € Ok as p = 3(m + nv/=d) with m and n of the same parity, and then
€(p) = e(2m).) Finally, we define § = 0 or 1 by (d+1)/4= 4§ (mod 2) or
£(2) = {—l)'ﬁ-

We fix a positive integer k and consider Hecke characters i of K satis-
fying
(17) Y((a)) = () a®™?

for « € Ox prime to 9. Clearly the number of such equals h{—d), the
class number of K, and each one has conductor 9. Associated to i 15 the

Hecke L-series .
Liws) =3 NE:;

If we define for any ideal a prime to 0 a partial Hecke series by

1 o g(A) X261 A1
3[2&-1F1$}=§L—|.‘i’|ﬂ§:—-—: Z |,.1,Jja y

AEn AEQ

efAl=+1

where the prime indicates that 0 is excluded, then v(a)N (a)*~2t+1 Z(2k —
1,a,5) depends only on the class [a] of a in Clg and a standard one-line
calculation gives the decomposition

(18) L= 3 Wi{'ﬂ_':’ 2(2k - 1,a,5) .
[a]€ Clx

The series Ly, s) and Z(2k — 1, a, 5) converge only for (s) > k + 1, but
can be analytically continued to the whole s-plane and satisfy a functional
equation under s — 2k — s, with root number w; = (—1)¥+1+8  Their
critical values correspond to s = & -+ r for integers 0 < r < & — 1 and their
reflections s = k —r. In particular, their center value corresponds to r = (),
and L{y, k) =0 if k = & (mod 2).

Any primitive ideal a (i.e., one not divisible by rational integers > 1) can
be written as Za+Z2%¥={ where a = N(a) and b is an integer. determined
mod 2a, satisfying b* = ~d mod 4a. The number (b + /=d)/2a in H is
then well-defined module Z and its class in H/5L2(Z) depends only the
ideal class of a. However, we will be wanting to evaluate modular forms
of level d and for this we have to require additional congruences modulo d.
We will choose a prime to ® and then choose b divisible by d (which we can
do since 2a is prime to d). We set

{d) b+ —d
2= e

(19) 2ad

H,
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where

a= (a,d)=1, &=0 (modd).

b+ v'—d
[a, =51,

Then =¥ is well-defined modulo Z and its image in M /Ta(d) depends only
on the class [a].

Each A € a can be written as u[mdzf}+ n) for some integers m, n € £,
and by virtue of our choice of & we have e(A) = g(n) (note that g(a) = 1
automatically). Hence

aB=1-% i g(n) {mdfid} + n}Ek-i

2 |n‘:-u:1"..r{,,1d]I + n|2s

m.n

Z(2k - 1,a,8) = (R(s) > k+ %}-

For each integer r > 0 we define an Eisenstein series of weight 2r + 1 and
character € on [g(d) by

+ n]3r+1

(20) Garsrelz) = %}:' {M:E"] (z € H)

(if = = 0 this does not converge absolutely and has to be summed by the
usual Hecke trick), with Fourier expansion given by

iy TI.Er-l-l
(21) Garsrelz) = L(2r+1,6) + o CT) E(Zs{m]mzf) "

@i o\ L

(g = e?""]. As an immediate consequence of (16) we find

e 1 (k+7—1) { =1Y*7""! v g(n) (mdz + n)?k-1
k—r—1 _ -
B3¢y Gartrel2) = 5 (2r)! (4@) 2 |mdz + n|2k+2r

m,n
and hence finally

Proposition. Let a and 25"’ be as in (19) and 0 < r < k — 1. Then
(22)

Z(2%k—1,a,k+7) =

@) (=2n/Vd) Tt

-r=1 (d)
(k+r—1)! N{a)j+r Garsr,e(za ]

This formula is true also for r = (), the case of primary interest to us,
because the summation via Hecke's trick used to define &) ; commutes with
the differentiation operator &.

f4. A factorization identity for theta series

Recall that i, and LY denote the Hermite and Laguerre polynomials.
For p,v €EQ, p € Epg and 2z = x + iy € H we define
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o416 =7 @r P S B s

neEf+u

For z = z 4 iy € H we set Q:(m,n) = |mz — n|*/2y, the general positive
definite binary quadratic form of discriminant —1 with real coefficients.

Theorem (Factorization Formula)., Fora € M, = € H, i, v €0, and
pP,o g E’Eﬂs
(23)

Z p2mi(mynp) {m_;;‘n]“ Lﬁ{ij{g:[mﬁ”” eTlimn—g,(mn)}fa

m.AaED

='|: :;I Elf:aa+1.n'2y,n+a+u?E.{H[‘THE Lz}

P! ' ﬁt#+n)[_§,‘,]{"“fj :

Remark. For the simplest case @ = 1, & = 0 the right-hand side of the (23)
becomes [HlijTyiﬁ'{p}[ﬁ](:}jﬂ, so the sum on the left is nonnegative,

which is not clear a priori.

Proof. For uy, us € C we have the 1dentity

2 ] 2 : a y 4 .
(E!ru:fﬂﬂy z g~ Tian .!'+2‘Itﬂ|'u:-qw_]) (Eirnu”"Ey Z {:ﬂf :||"|J+E:'t£|:u:+;.-:|)

RnEE4+u fEL4ap
=Er(a:u?+u§jf2::y§ :Bwimi:fni-:?ﬂ:im{u:+a] E : E—Iraﬂ3y+2rt‘nfm:+au;+u5}

mER NEE+u
E—‘.ru-.u-_ulp'y ]
= E : Ei:i{mu+nu}+r[:mn =i(mn)]fa—a[(mfenju,+{mz=nlusially
\-’Eﬂ'y

mAacE

the first equality being obtained by the substitution £ = an + m and the
second by applying the formula

E E_'“#l‘_}:.ﬂ-ing — _1_ ze—ﬂ{n—ﬂlil‘rdi-ﬂ:riu;: ['_q s U? B = lI::I:
v A
nEz_l_“ nEld

which is a standard consequence of the Paisson summation formula, to the

inner sum. Identity (23) follows by comparing the Taylor coefficients of
u} v on both sides. W

HRemarks. 1. This formula in the case a = 1 js essentially contained in
Kronecker’s work ([5], Chapter III). It is also a special case of a general
transformation formula for products of Fourier series which is used in the

field of radar signal design (cf. Chapter 8 of [7], especially the Corollary to
Theorem 8.18). a
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2. The proof can be expressed in an essentially equivalent but somewhat
different way by using the transformation formula of the genus 2 theta series
'E'[H(t.l, E‘] = Z ﬂri 'ﬂznﬂi’ri "ru (: EHa HE c&*}

ng&?
under the action of the matrix

1 D[ﬂ 0
0 0lo -1

M= 0 -l]: 1 —a ES;JqI{E}
a 1.0 O

to relate the values of ©2) at the two points

war=((wtiit) . (07 %)

(where it obviously splits into a preduct of genus one series) and

_ 1 [fwaituaz v BN |z]* -z
{u’z}_h(?-ﬂy(—ﬂﬂl—ui)-l_(ﬂ)’ an(—z 1))

This is connected with an interesting interpretation of the factorization
formula in terms of the geometry of the Siegel modular variety of genus 2
which will be discussed in a later publication.

We now apply the theorem to the case when z 1s an appropriately chosen
CM point in the upper half-plane, in which case the left-hand side of (23)
becomes the value at a CM point of a non-holomorphic derivative of a
holomorphic theta series of weight a + 1. We let K = Q(+/~d} and ¢ have
the same meanings as in §3 and define for each ideal a and odd integer
h > 1 a theta series

BE."']'{z} _ % Z}.h-'l gV NN () (z €M, ¢= e
AE@

which is a modular form in M (Tp(d), ) and a cusp form if b > 1. Clearly
E;[;'n}{z} - ,J.,ﬁ—lla{n"”{;] (the EI'E,M are the modular forms corresponding
to the partial zeta {functions for unramified Hecke L-series of even weight
h — 1). In particular, E[ﬂ”{z} depends only on the class [a] of a in Clg.

On the half-integral weight side we will be evaluating modular forms
of level a power of 2 at our CM peints, so we have to impose further
congruence conditions on the bases of our ideals modulo powers of 2, just
as we did modulo d in §3. We set
(24)

ziﬂjziiz;:qeﬂ {n:Ea,H—EE], 2fa, b=1 (mod 16)).
which is well defined modulo 8Z. [ Any other fixed odd choice of § modulo
16 would be just as good.)
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Theorem. Let a, a; be coprime ideals of K prime to 20 and to 2, respec-
tively. Then for k, h > 1 satisfving k= 1+ 4§ (mod 2), h =1 (mod 2) we
have .

S1gh) ¢, () —4 5 dFFAE-S/4 N ()]
a* 18“1(2 } {N[u]} 92k+h—4 N[m]k“l“

(25) - Ht-lf?{z{nsjm} Branosa(56))

wherz 6, 412 are the theta series defined by (3}, (12) and (13} and 2t and
252 have the meanings given in (19) and (24), respectively.

Proof We will choose p =k =1, a=h—1, p = 1/2, v = §/2in (23),
observing that

2 g ~
EEP}[r"r J(2)=2(=1)®=*"28,54p2(z) for r=1,s=p (mod2)

by (14) and the definition of E{Pﬂﬁ]. We further choose b = 1 (mod 16)

such that (b+ «f—?}f? belongs to a®a;d (in particular, b is divisible by d
and c := (b? + d)/4aa; is divisible by a and congruent to § modulo 2) and
set z = (b4 +/—=d)/2aa; in (23). Then

A

d 2] - 2
aa; = aa; [1, z], .':5, ) = ayz/d, 22— g7l Y =zaz

-'|:|'I'.'||. 1
and

imn — Q;(m,n)
a

)zl mé+“] (mod 271Z),

= E:r:'[ m?e—bmntaayn’

and substituting all this into {23) gives the assertion of the theorem. W

Remark. Notice that the theorem relates values of modular forms of dif-
ferent levels. This forces ratios of such values to be in smaller fields than
one would suspect a priori. Also from the transformation properties of

5-"8'&"}{:} under homotheties of @ and the action of I'y{d) on z one imme-
diately gets the following:

Corollary. Let a and a, be as in the theorem and v a Hecke character of
K satisfying (17). Then

- Ek-lfzifﬂt}

depends only on ¥, a, and the ideal class of a.

This transformation property is quite non-obvious and was proved in [8] by
a long calculation (pp. 558-562) of quadratic symbols. The point is that

gl - (ant ;|- [l'l‘\.ﬁl-\,li”:.._ H"T ‘}!' |'l‘1_ L,_ LY !Ffin. !:—ﬂ. 4 {'n-{ { ‘_._l:!..

LE {"-I"UL LA A Y e tanss o L 1 ':-1'1.w-1 ry ".fI- i *_—L\fﬁ"-}! L.J-'L.f..gi__

.,.ﬁ,.H“ SR I-C-!'l.'l'_i rﬂﬁ‘l

.
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the theta series 8 _;o has level 4 and has nothing to do with d at all, so
that the Kronecker symbol (d/-) implicit in the factor ¢ has to come from

the transformation behavior of the CM point zi ! o, under change of ideals

and from the antomorphy factor of #_, ;5.

§5. Final formula for the central value of L{y k)

The proposition of §3 and the theorem just proved in general involve
different modular forms: non-holomorphic derivatives of Eisenstein series
(of odd weight and character £) in one case and nou-holomorphic derivatives
of theta series {again of odd weight and character £) in the other. There is
one case where these overlap. Namely, for the Eisenstein series of weight
one we have

(26) £ Gie2) L Z (> _zlm

by (21), and since the coefficient of n is the number of integral ideals of
K of norm n this is simply E[q] B (z). Hence we can combine equations
(18), (22) (with r = 0) and (25) (with & = 1) to get

2w /v/d)
(27 /+/d) z

Ly, k) = 1) #}{ﬂ ﬂ'b la{ll {d']'}
A © [elfas]E Ol
-1
(—1)fwtdhiz-3/4 ¥(a) (2) @ 7
=G 2 Wy et et

[alda:]E Cly

If we assume that d is prime, so that the class number h{—d) is odd, then
we can replace first a; by af and then a by as]* to obtain:

MAIN THEOREM. Let d > 3 be a prime = 3 mod 4, k a positive
integer satisfying I: = § + 1 (mod 2) and v a Hecke character of K =

Q(+v/=d) satisfying (17). Then

ko /2374 z

27)  L(v.k) = ::r-g{ T

S () V@ 0o ()

[a]€ Cly

Notice that the terms of the sum are well-defined by virtue of the corol-
lary in §4.

Corollary. Under the assumptions of the theorem, L(+, k) Is non-negative.

Remark. According to Greenherg {[ 1, p. 258), the corollary has the ap-
plication that the values of L{w 1 k) for a fixed Hecke character 3 of
weight one have a well-defined average valre equal to L{1,£), as £ — oo,
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He points out that this implies the rather weak estimate L{y*~!, k) = o(k)
and asks whether this can be improved. It might be of interest to see
whether this can be done using the above theorem.

§6. Recurrences

The results of the preceding sections imply that both the central values
of odd weight Hecke L-series and their square roots can be expressed in
terms of non-holomerphic derivatives of classical theta series evaluated at
CM points. In particular, for the odd powers of the weight one character
¥y introduced at the beginning of the paper. for which d = 7 with class
number A{—d) =1 and § = 0 (the only such casel), they give

=k - =
Liﬁ&fk_].k}= [Eﬂ-l'lll""!?.] &.{-HLE:(' ""1'!"'(_"]

k=1 14
kaz—all"-l.ﬂ.i' 1 ST 2
(28) = e e (D [

for £ > 1 odd, where fy 2 is the function (3) and

- —1 " wis
+Z{?}lfqﬂ {q——.ez ).
n=]

L

_1 “tmngant _
(29) O(z) = 7 D gmimadaat
m,ned

In this section we show how to obtain the values {8" f(20)}nzo of the
non-helemorphic derivatives of a modular form f at a CM point z; as
(essentially} the constant terms of a sequence of polynomials satisfying a
recurrence relation. We will illustrate with the case of the full modular
group, treating other groups, and the functions occurring in (28), in the
next section.

As well as the differential operator D and e = D — kfdwy of §2, we
will use the operator

k 1 d k
ﬂk_DmEEE—:EE'—EEE{IJ,

[
where £3(z) = 1—24 3 o1(n)¢" is the Eisenstein series of weight 2 on
n=1

SLy(Z). As is well-known, this Eisenstein series is not quite modular, but
transforms instead by

az + b

Ez{cz + d

J=(cz+d? Balz) 4 Zeler+d) (¢ %) e s1az)).
i ¢ d

Equivalently, the function £3(z) = Ea(z) = 3/my (v = 9(z)), thovgh not
holomorphic, transforms under the action of SL2(Z) like a holomorphic
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modular form of weight two. It follows that 0, f = 8¢ f — kE3 f/12 trans-
forms like a modular form of weight £+ 2 if f € MZ(T') for any subgroup
I of SLy(Z). On the other hand, ¥ f is clearly holomorphic if f is, so 4,
maps My([') to My 2([). The operator D, which does not preserve the
ring M,(5L3(Z)) = TJE;, Eg], does preserve the larger ring {[E., Eq, Es).
We have

(30) v

Ei - E
D(F2) = =~

— - e
E2E43 B ppy(s) = E2Be— E]

D(E4) = >
and hence—since [ clearly acts as a derivation—

D

==

_Ei-E, & L E2Ea—Bs 8 | E3Es — E} &
© 12 8E, 3 8E, 2 8 Es

as a differential operator C[Es, By, Eg) — TE2, Es, Eg]. If f is & holo-
morphic modular form on SL3(Z), thouglit of as a weighted homogeneous
polynomial of degree & in Ey and Eq (where E, has weight h}), then from
df/8Es = 0 and the Euler equation 4E48f/0Ey + 6Eg 8f/0Fs = kf we
get

(1) == - (€ M(SLa(Z)) = CE,, Bd)).

Each of the three differentiation operators D, & and ¥, has advan-
tages over the others: the first preserves holomorphicity and acts in a
simple way on Fourier expansions, but destroys modularity: the second
preserves modularity and acts in a simple way on Fourier expansions, but
destroys holomorphicity; and the third preserves both the properties of
holomorphicity and modularity but has a complicated action on Fourier
expansions. The nicest way to understand the action of these operators
and their iterates is to put them together into three generating series. The
first is the Kumetsov-Cohen series

- D™ f(z) A"
fﬂ{"x}‘é BEFD - (k+n_1) ml (2€H XE0),

where f € M3(T'), and the other two are

9" f(2) X"
) lk+n-1) n

(32)  fa(z, X) =X fp(2,X) =% —
§1[1+1

(the second equality is a restatement of equation (8)) and

(33)  falz,X) = emBHDXN2 (0 x) = ~Eil0X/12 falz, X) .
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The Kuznetsov-Cohen series transforms under {z ;} €T by

azr—+b X
cz +d’ (cz +d)?

} — I:Ez+d]k E-:.l:fi-ri{f.:+d']n fﬂ{fa}:j r

fo(

and the transformation properties of y=' and Es(z) under I imply that f
and fa satisfy a similar equation but without the exponential factor, which
simply says that the nth Taylor coefficient in each of these series transforms
like a holomorphic modular form of weight k+2n. These Taylor coefficients
of fa are the 8" f, by (32). For fs they are given by:

Proposition. Let f € M(T) for some T C SLy(Z). Then

= Fn(ﬂ X"
(34) f#if:x}zgk{k+1]-..[.{:+n—lj n!

where the modular forms F, € My s+2a(T) are defined recursively by

nin+k—1)
144

with initial conditions Fy = f, F, = 7f.

. ol fn + &£ =1 EE
Proof. Fo =3 = 12
roof. Using (33) we find F, tgu I ( n—F ) 12

the result follows using (30) and (31). ®

(35) Frpy = 0F, —

EI. Fn—l {ﬂ 2 l]

)" Df, and

We now illustrate how to get the recursions for the numbers {6" f(z0)}
in the simplest case I' = SLy(Z), f = Ey, 20 = i. By the transformation
property of EZ under I' and the fact that i is fixed under z — —1 [z, we
deduce that £7(i) = 0 and hence by (33) that fa(i, X) = fali, X) for any
J € Mp(SLa(Z)), so 8" E4(i) = F,(i) where the polynomials Fy = E,,
Fi = —%Eg, Fy = %EE, F3 = —%E-EE'E; Fy = %E§+ F?E‘EE‘ .
can be computed by (35) and (31). By homogeneity we can write Fo as
E} f3+1 fn[fEstf"r 2} where f, € E',[-é]{t] is a polynomial in one variable
(even if n is even and odd if n is odd, and of degree < (n + 2)/3) given
recursively by

_ _t _ =1, n+2 n(n + 3)
(35} .fl:l - 1| fl = _3:- .fn-l-l - Tfn" E f-fn-T

fa-1.

Since Eg(i) vanishes, we obtain finally

Example. For n > 0 we have 8" E(i) = f,(0)u/24+1 (= 0 if n is odd),
where w = Ey(i) (= 30(1)%/(27)% ) and {fa(t)} are the polynomials de-
fined by {36).
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§7. Examples

To calculate the non-holomorphic derivatives for modular forms on
other groups I' than SL3(Z) and for other CM points zy, we choose a
function ¢(z) satisfying

1) ¢(z) is holomorphic;

i) ¢°(z) = ¢(2) — 1/47y transforms like a holomorphic modular form
of weight 2 on T, -

=) P (2,)=0
Condition ii) is equivalent to

N
i) ¢(55) = (= +d)*o(z) +

and a short calculation then shows that Py

iv) the function ¢ = D¢ — ¢? belongs to M4(I'), and

v)if f € Mg(T), then d,f := Df — ke f belongs to Me42(I).

(In §6, we had ¢ = 5E,, ® = TLEq, ¥s = ¢.) The analogue of the
proposition in §6 is then that the series e~ #(*)* fp(z X) has an expansion
asin (35)with Fo=f, Fi =94 f,and Faopi =9 Fn+nln+k-1)8 Fry
forn > 1.

If we choose an explicit set of generators for the ring M.(I') and then
express the differential operator ¥4 in terms of these generators, as was
done in (31) for the case of SL2(Z), we obtain an explicit recursion for the
polynomials F,,. The fact that ¢ vanishes at zy then shows that 8" f(zp) =
Fu(zp), so we get the numbers " f(zy) as special values of a sequence of
polynomials satisfying a recursion.

We give the details of this for the functions O(z) and #;2(z) occurring
in equation (28), which are modular forms (with multiplier system) on
['o(7) and T'o(2), respectively. We give the details # 5, since this is the one
needed to prove (3) and also because the structure of the corresponding
ring of modular forms is simpler.

We abbreviate # = 8, 5. By (3), #* is a modular form without character
on [g(2). (In fact it is the Eisenstein series 3_., n%g" /(1 — ¢*).) The
ring of modular forms on T'g(2) is generated by the functions

b
d

e{ex + d)
2w

for a.tl{i JeT,

i
A= A(z) = —Ey(z) + 2E2(22) = 1424 5 2
n=x] 1- qﬂ
n Gdd

and %, of weight 2 and 4, respectively. For instance, we have

Eq(z) = A4+ 1926% .  E4(2:) = A" — 486%,

. : : 1l 4 +/=T
We are interested in the point z3 = — By standard complex mul-
tiplication theory, y | d)
. e . « CL T e T
_1 It Towtr ¢ ok T RS ':'?I N '""h': IT"'IF'- > - 1 ) o MJ;| Fa
. . . . Cien &
R i Lo TV SIPUPC RN S S
L AT IR " W S R A LT A Rl &t E )
ﬁrf},'*r:ljﬂi‘?‘g{d. g P TR -
' - S L& Fen, o i ot
- ) -'b - - -H-:_F___“ e -f# = I:T_.' = ":-__} R ~...1 . ::ﬁﬁ

v
A III, i ﬂi.l Lo i o
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. 3 3 1
(37) E3(z) = z 0%, Alx) = 3 0, B#(z2)® = ~ 587 04,
with  as in equation (1). We therefore choose
1 . 3 1
é(2) = 12 (Ez(z) - 5 A(z) = 55 L2(2) — 37 Ea(22)

so that ¢*(z) = ¢(z) -h}filﬂ'y transforms like a form of weight 2 on I'g(2)
and vanishes at z,. e Jy-derivatives of § and A are found to be

_2 _ 9 2
ﬂ¢ﬂ_ﬁﬂﬂ, JA = 3248 ﬂ,q ,

80 (since  is a derivation) the action of ¥ on either M. (To(2)) = C[8%, 4]
or its 8th degree extension C[#, 4] is given by

2 d 8 9 L4, 0
(38) ﬁ¢-_ﬁﬂﬂag+{3?£ "42'4}5.4'
Also, & = D¢ — ¢* equals _{ﬁ] A= 5-1-9 - The above discussion then

shows that §"(zy) = F,(z5), where F,, is a weighted homogeneous poly-
nomial in # and A of weight 2n + 1 given inductively by
2
Fo=6, Fi=3Af,  Fap=0sFy+n(n— %}@F,.-, (n>1)
with Jy as in (38). By homogeneity we have F, = gin+1f, (A/8%) where f,
is a polynomial of the same parity as n, and in terms of these the recurrence
becomes

_ 1. 8n4 2 1,.56% , 44
the first few values being
2 19 43 6
=1, fi=—t )= =——1% 4 2 = - 3+

and (28) and (37) tell us that the numbers

=+ =T)" 1
B(Zn+1)= iﬁ_l—fﬂiﬂéfu?} =3 1, -1, =3, 7, =315, —609, ...
satisfy equation (2). A slightly moie convenient choice of normalization
turns out to be F,, = 2(A/21)"0b,(4416%/4% + 7/64) rather than F, =
FiR+1 £ (A/8Y), so that

1
bp = 1
With this choice the B(2n + 1) are simply the constant terms b.,(0) and
the by () satisfy (5).

bi=1 ba=a-1, by=0z-3, by = =227+ 133247,
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For the other assertion of the theorem in §1, giving the numbers A(k)
of (1) in terms of the recursion (4), we must use the formula A(k) =
H*-19(z,) /2021, where 5, = (T + w.s"'r—_'?],u'rl-l (this is just a restatement
of (1) and (28)). The calculations here are more complicated because the
ring of modular forms with character M. (To(7), (=F)") is not free, but is
generated by the function © defined in (29) together with the two weight
three forms

O = ¢ 3 (=TI,

rAEE
r=s {med 2]

GO

B =1-3 3 (S 1) ()¢

n=1

subject to the relation E? = (©% 4 ©())(©* — 2703)), When we write
the non-holomorphic derivatives 8"@(z;) as the values of a sequence of
polynomials, then these are polynomials in three algebraically dependent
variables. We can use the homogeneity to write them as simple factors
times polynomials in z = ©®)/@3 and /(1 + z)(1 - 27z) = E/©°, and
after some computation we obtain (4). We leave the details to the reader.

Remarks. 1. ﬁcmrding to the recursion (4), the polynomials as, have
coefficients in Z[3], and this is actually true: the first values are 1, (2 —
34z)/9, and (8— 218z +3142° +4322%)/27. It is not clear on an elementary
level why their values at z = 1 are integers (let alone squares). Similarly,
the recursion (5) involves dividing by 21 at each stage, but in fact the
polynomials b, (z) apparently belong to Z[z].

2. It is now clear that we cannot expect any simple relations between
the polynomials as,{z — 1) and b,(z), even though the constant terms of
one are the squares of the constant terms of the other: the vanables “z”
have completely different meanings in the two polynomials, being a modular
function on Xp(7) in the one case and a modular function on Xg(2) in the
other. The identity of the constant terms has to do with the way these two
modular curves intersect in the Siegel 3-fold Ha/S5ps(E).

Finally, we mention that in the 5 cases d = 11, 19, 43, 67 and 163 with
R{(—=d) = 1 and § = 1 the calculation is even easier than the case treated
here with § = 0, since now the function whose non-holomorphic derivatives
must be computed at CM points is B35, which is a modular form (with
multiplier system) for the full modular group (cf. equation (15)). Here the
recursions obtained are essentially the classical recursions for the Taylor
coefficients of the Weierstrass e-function, as given for instance in [3], Chap.
VII, p. 237.
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§8. Twists

We finish by mentioning a result on the central values of quadratic twists
of Hecke L-series. For simplicity we consider only the case of equation (7),
l.e. twists of the L-series for the grossencharacters of conductor (v'=T7) of
Q(+/~T7) by Legendre symbols attached to primes p = 1 (mod 4). Then
one of us (F.V.) has found a formula giving integers B(k,p) such that (7)
holds. In the simplest case & = 1 this formula is

> x(n® + ?}Elﬁ(n—"b‘:;—(-_?} + ﬁﬂlfzfﬂ%ﬂ}
B(l,p)= = F

1

Sx)G(x) Elﬁ{l—-‘-;—ﬁ}

with £,,2(2) as in (3); here the sum is over n (mod 16p)) satisfying n = 1
(mod 16), x(n) is one of the two quartic characters rmodule » Glx) =

. x(n)e?™"? the associated Gaussian sum, and S{x) =2, 1—14, 2i
n (mod p)

. 7
of 1+ 1 according as x(7) = 1, {, =1 or —i (50 that ¥(T)S(x) =3+ [5}}
For p < 200 this gives the values

p_ |5 13 17 29 37 41 53 61 73 89 97 101
B(lp)|1 -1 -1 -1 1 1 0 1 3 3 -1 -1

p | 109 113 137 149 157 173 181 193 197
B{l,p)| -1 2 1 0 -3 1 1 0 0
This will be discussed in a later publication. We have not succeeded in

correlating these numbers with the Fourier coefficients of a modular form
of weight 3/2.
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