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§1 Introduction.
1.1 Ourmain concern in this paper iz the following embedding problen -

Criven beforehand the finite Galois extension F /K constmctall extensions L1 E contyining F | with

[L:F]=2 and LIK Calois.

Though much of what we ﬁ.;ﬂl:in can be done generallyfor [L:F ] = anvpome p |, we prefer
o deal with the caze p = 2 only, because of its relation 1o quadratic forms . Throughout this paper we
azaume every field has characteristic not equal to two .

In zection 2 we find necessary and sufficient conditions for the existence of such extensions in
terms of the wanishing of a detenmined algebra classin Br(K ) , the Braver group of ¥. This is
surimarized  and precizely defined ) in the main exact sequence given in Theorem 2.4 . A zeneral
eriterion like this.is known and goes back © Braver , [ Br ] . Further meferences can be found in [ Wi ],
[Fr}l,[5h]. For conrendience of the reader we include a proof in €6

Inzection 3 wre restrct what was found in §2 w0 the cage where the eronp
Gal{ FAK ) is of exponent two and rephrase the main exact 2equence in Theorem 3.8 | In zection 4

we estate the Injectuvity kp (K3 = Bip (K ) in Merkurew's Theorem in terms of Calois eXtenSions;
fhis 13 Propositon 4.2 . A pﬁr&ljr formal generalization of this restatement iz raised as a questionin 4.7

[n zection 4 we also show some concrete applications of all this 1o the construction of exensions
whose Galois zroups are of a special type (h< 3 ,zee §3 ). These include the quaternionic apoup of
onder 8 and a group of order 32 , built by pasting o dihedral #roups of order 8 by their centers

A generalization of Win's method of construction using spinor nomms ([ Wil) i3 ziven in 45 .



~J

1.2 Aottt -

Givenafisld K

K* iz the multiplicative group of non-zem elements.

F* 1S s the gronp of 2quare classes | viewed a3 a vector space over the fisld of two elements

If & izin K* <a> denotes its square class .

FIZ isthe field K with all its square roots adjoined.

EBr. { K} i3 the 2-tworzion of the Braner group of K |, which wee will write additively .

Glventwo squareclazses v = <a> and w = <b>, [a,b] or [v,w ] will denote the
class of the quaternion algebra (a , b)!K in By (K ).

Given a wactor space ¥, over the field of two elements | $%¢ ¥ ) will denote the degres two part
of the avrumetdc alyehra V. |

B2 (K ) 13 Milnor's second k-group , see [ Mi] . We will use its followine definition ;

ke (K3 = 38 K*JE*2y ) { <a> . <b>: {a,b] =01}

Uy = {+1 -1} wviewed a2 namrally embedded in K*



42 The main exact seqUence.

Gleena Galots extension FAE with Gal(FIE) = G, we are interested in the follownng set of
extensions of F contuned in some fixed alzehraie closure.
2.1 Darivsy o
Q(FIKi={L: L2>F ,L{K aGaloisand [L:F] £ 2}
Taowhatfollows |, FIE i3 assvmed to be firdte | The stndard modificstions shonid be uzed for the infinite
caze . This will e tacitly azsumed in Theorem 3.6 .

Q ( F{ K ) can he interpreted a2 a cohomolozy #youp

2.2 Lemumi o Themsp HO(G F¥IF")y= Q(F!/KY whichaends <x> 10 F{4fx'is
hijective
Ewof Let abein F* hen Fi+ x VKisnormal & F(y x ) =F(y %€ ) forall # in

wd

¢ o %isinF*E forall ¢ in G < <x> isin HO(G F*/F*2) =

Using this bijection we can cany e gyoup stuemre of  HO( G FYIF™S) overw Q(FIK).
Then Fiy % 3% Fio v )= F( x.7 ). The idertity element , of courze . i3 F . Also , we will

sometinnes identifv Q { F/ %)Y withis imagein F IF*

e 3 fhiugmr Given Lin Q(FIK) with [L:F] = 2 the exact sequence of Galois
STOUPS
L =y » G{LIK) = G =1



determines an element in the second cohomology group |, 3ince it 13 an extension of Po B¥ . Here we

eplaced Gal{L !X} by p, slnce they are isomorphic az G-modules . This induces a map
BQ(FIK) = H (G, )

where 8{ F ) i3 defined a3 the wivisl clazs . We will show later that B is in fact & homomoiphiam. An

e plicit formula can he eiven as follows |

— . 0 * ok D x€ 2 . e
Given <% > W HY(G ,F IF" %) % have i for some 2 i F , hence

g -3y = I‘l{g,h}.shg with f(g,h} in p, Then B({<x>) istheclaseof the cocycle f .

See proof n G6.

.4 THEOREM : The following sequence is exact

! b
< QIFIK) = H2(G,ps) = En(FIK).

e
I

Hexe the first imap indvced by the nanual inclusion and ¢ i3 induced in cohomology by the ineluzion
pz =+ F* | foliowed by the crossed product yap.

A See 6. W

2.5 Bumend The exactness at HE  zives a known criteron for an embedding problem ;. there 12 an
exension withcocycle f, ie: thereizan L auchthat B{L) = [ iff &{f) iz tivial in the Braner
group . Jee forexample [Br), [Fr] , [Wi].

inorder 1o get 2 firat corollary we need the following -



2.6 Lomun - Let FIK bea finite extension and % anelementin F* then thersiza v i B
suchthat <%= = <v> and Trpye { 7)) 13 n0tzero

Foart Suppose Tipe (X, 23} =0 forall 2 in F then replacing 2 by ¢ + 1 and expanding
under the asswnption char snot 2, weget Tigp(x.2) =0 forsll and so x = 0. ®

27 COROLLARY :{ Ware ['Wr ,Lemma2.1] )If F is pythagoresan { ie: all snms of squares in
F are squares i F ) then the tmage of B i3 trivial |, hence allextensions LYK in Q{ F{ K ) have the
direct product o Hz g3 Caloiz £roup -

Amy Let L=F¢yx ) and Tipy (x) notzero . Such anelement exisw by hie lenuna . Then

%

v _ Tipy [ %) . .
= 3; foy anime ¢, In F* and PEK}: = Z sg 12 azquare in Fsinece Fois pythagorean
' g

30 <x> = <Tigp(x) > and‘rhﬁrﬁsmfcﬂlcr‘ﬁrs u
§3 The exponent t¥o case.

3.1 Nosmw We now restict ourselves 1o the case where Gal( FI K ) has exponent twmo
Becauze we would like to view this Calois group as a vector space over the field of two elements | 7we will
derote ity ¥ . &lso U will stand for a finite dimensional subspace of K™ { K™ { here again viewed

as WeCwr 3paces over the figld of two elements ) . Given u in U, ay will denote a reprezentative in K*.

3.2 PROPOSITION : Given U asabovelet F = K{+ 1 ) thatis F i3 K withall o By
adjowned | for v in 17, { defined in some fixed alzebraic closwre ) . Then
() FI¥ 12 Galois . Let ¥ = Gal (F{ K)

di) Let V" = Hom ( ¥, ) hetheduoal wector space | The following map i3 an isomorphism |
U= 7"

.II T
1 ---}{-:Ir—‘p¢



Fry” This is standard Foopumer theory and can be found forexamplein [La]. @

3.3 PROFOSITION : Let 82 (¥™) bhe the degree two symmerdc alesbraon V" . Then the

identty map on the group of functions ¥V XY = p. elds an isomorphisi

- e |'\v|3 i-i-r_.
H (V) 2 87¢Y)

Pt This 13 a consequence of the Kirmeth formula. See forexample [ HE, Y115 ). Iteanalzo

be prowen directiy | In fact ther i3 & g isomorphism betwreen the cohomolog v fng and the avmmetre
alzebra butwe will notneed this . &

3.4 Fama Hote that the degree two algebra on the dval space can be wiewed a3 the group, with

pointirize addinon , of quadreatic formas on V.

From now on we will identfy these mwo zroups and keep the naumes for the maps 8 and ¢ asin
Theorem 2.4 above . Also according 0 3.2 (i) everyelementin € (¥ ) can be written a3

% o
an 1
1<

ny forsome uj in 1,

3.5 FROPORITION : If u,ware in U then ¢(n.w ) =[w,w] inthe Braver gronp . Here

[0, w1 13 the class of the quaternion alegbra in (n, w)i/ K

Sy Bee forexamnple [Sp 44) L[ Se] ®

The Calois groupz of extergiondin Q (FIK ) |, where Gal{ FIK ) is of exponent two | are the
extensions of o by some finite vector space ¥ ( over the field of two elements ). These groups are called
e-eXtra -apecial proups (see [Hu |y From 3.3 and 3.5 we deduce that the criterdon 2.5 applied to these

groups can be expressed in terms of a vanishing product of quaternion sleehras  This iz svmmarized in 3.7



We now caloulate propertes of these groups inmore detail | Thew can be classified by the quadratc
formsover ¥ a3 3.3 and 5.4 indicate . Denowe by # the produvct of two such gmups where we identify
their copies of P, . Also forswchagroup G et Gl= G % . # G {r tinez). Thenthis
amalgamated product correspondz o the oxthogonal sums of the comresponding quadratic forms.

Foraquadcatne form q on WV let:
b{v,w)=qi{v+w)-q(w)-q{w) hethe associsted bilinear form.

Vis{wvin V| biv,w)=0"ferall #in ¥V} be the radicalof V.

Vi={wvin V| q{v)=10}

Q" he q projeced on VIVY ,sothat q' i3 poreingular iff V' =V

&) = Arfirvartantof @° when non singular and 0 otherwise |

n=dim{¥ V"

R = codimension of a mazimal !I-:ifﬂﬂ-j’ Lotopic 2uhspace of ¥, { Thiz does notdepend on the subapace
chozen )

Usmg  the etandard classificanon of these quadratic forms | Wwe see that there are e3zentially three types of

groups ([ Hu ). Theycorespond to the following cocweles

Tope 10wy oy + 0 o+ 0 g0y 0L EVEN
Tope 20 myp.omg+ gty + 0.0y 4+ o+ Uy I &ven
Tope 30 my.up + . Uy + L+ Uy n odd

for some ndependentset vy , ..., 0y In U = ¥ the dual wector apace .

Tvpes 1 and 2 correspond 0 nonsingular quadratc forms of dimension n and A invarant 0O
and 1, mepectvely Tvpe 3 ,m =1 i3 C4, cchcofonder 4. Tvpe | ,0n =2 i3 Dy . the dihedral
spoupoforder 5. Tvpe 2 n= 2 i3 Hy |, the quatrdonic group of order &

It1z not hard 10 see that

for toe | h=nmnl2

for tvpe 2 h=ni{Z+1



for tpe 3 h=d{n+l1})l2

S0, after zome 2implification , h 2 2eento be the mindmun numberof svmhbols v, % needed 10

define q .

We zze then that any such 2rovp can be witen a3 follows :
r &yl ¢ T
{DqﬂH3 #C )V,

Hee r>0 sndt=00r1 | Thiz decomposition i3 ot unigue byt the ondy elations are

3.6 THEOREM : Let U beasuhspaceof K¥{E*¥2 and It F = Ko U V.

Then there exiats an extergion L/ K containing K with Gealois eroup isomorphic 1

D; k H‘{"gl-" 4 Cfl A ¥ iff thers is anindependentset {wy,...,u,; in U

with o= 2.t + t , such that

A Clwg,ug ]+ [ng,up] d+tfug,op] + [0y,00] + .. + [0y, q,0z,]=0.

Aves - Itfollows from considerations above | after some caloulation , ®

3T Femf o "We can handle the crovps with b« 3 inanelementary way ( 2ee 4.5 for example the
condinons above can be otven in ermsg of guadratic forms nstesd of quatemion svmbols . This follawrs in the
atandard wray from the faet that ondy o such avmbols are involved | Here is 2 list of those stonps |

i Cq , ) Dy, (i) Hy, (i) Cq# Dy and (v) Dy 3Dy .
The cases (i), (1) and (i) axe classical , see [Wi],[Lm,ex:¥VI[ 8] and [Le] . The general caze i3
gimenin [Le . Seealso [Fr) and [ M2].



e can now oive the exponent too ersion of the maln exact sequence

3.8 THEOEER - The follawring sequence i3 exact
" B 5 # b o !ij
I = Q(EEIK) = #(K'IK™?) = Brn(K)
Here , Fl&) denotes the field K withall its square yoots adjoined { 33 usval | in 2ome fixed algebraic

closure ) .

Syt Intfollows easily from Thm . 2.4 and the conziderations above by takine the Lt on all fingte
dimensional subspaces U ©@
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44 Relation to the injectivity in Merkurjev's Theorem.

Merkurjev's theorem state2 that the natural map ko (K ) = Brz (K ) i an isomorphizm |, for any

field of characteriste not ™. | See [Me ], [Wa ] [ Ar] ). "We will now showr how the injectvity in this

theorem can be restated in terms of Galols extensions.

4.1 PROPOSITION : Let F = K{f s ) for a in K¥ then the namral map
w: B = Q({EKEhE)
¥ = Kl x

zamefies Hy(x) = <a > <N{x)>.  (Here,N= Ngg )
( Thiz reiates to & corestacton formuta given |, forexample ,in [Ta,3.21 )

Ay Forany v in Gal{ KIZH K ) we have

w i
X M {
oo W
x

X

30 the map iz well defined ,since N {x) isin K and hence is asquare in K2l After some caloulation
the claim follows from the formulafor B givenin 2.3 &

4.2 PROPORITION : The injectivity in Merkures's theorern ko (K ) = Brp ( K ) is equivalent
to the follawing
Every Galoizextension L /K containing K with (L K@ 1=2 iz of the form
Kl e )y wath oy = Xy X forsome xp o K5 ), am K.



t1

Aivef” From the definition givenin §1: k(K ) i3 88¢K* 1K *2) divided by the suberoup

generated by all <a> <b> with [(a,b]=0 or equivalendy, with b= N{x) for
some % in K (v a ). Theresultnow follows fiom 4.1. @

43 Bemnt Ingereral the smementin Prop 4.2 does nothold ¥ X9 is replaced by some

ntermediate feld . Precizely ,if F =K (+f U jand L = F(4 x } i3 Galoizover K, then
K% 3| K 15 Calois . Hence 4.2 appliesand x = Xg . ... . Xy modulo squares in K1 v for

some xy WK (.8 ), % in K. Now, tere 15 no way to assure that in generel <8 > willbelonz 0 U
A comnterexample for h = 3 |, thowgh in a different cetting |, canbe found in (T, Chd | and [ 3TW ).

However  ttistruefor h < 3 ,ie for allcazes Hsted in 3.7, where the following lenuma can be naed

matead of Merkurey's Theorem |

4.4 Coouman abeisuses Glven two quatemion svmbols [a, b ] and [e,d ] then
the follomwine ame equisalent
(I}  Thereizanelement & suchthat [a,be] = [c,de] ={ac,e]= 0

i [=,b]=[c,d]
Sas” See forexample [Lm ,p69Ex12] .0

4.5 PROPOZITION : Let L/!K bea Galoiz extension wich group is izomorplhic 10 20me of
the grovps listed in 3.7 {groups with h < 3. Let F= K {f U }he the extension of irdex two

contained in L. Then L can he wiiten in the following form

L=F{«uxwz ) where x EK{ﬁ}, y e R{yb ),

g & Kivab ) and <a> , <b= are some independent classes mn 1J

Foaf s Itfollowsfrom 3.6 , 4.1 and 44. @



46 Seaawsk s The elements x|, ¥ and 2 can be worked out quite explicitly i any specific example .

Also In the quaternion case | if atleastong among 4 , b or ab i3 & 3umof two 3quares in ¥ |, then only

w0

0 of x , 7 and = arerneeded  Forexample: whema =2 and b =3 we get x = 2 + o 2

v=3+v 3 and z =1 hence

G2 TG+ yE L0

haz quaternion Gaiods gromp | Here ) i3 the field of rattonal numbers ).

Another interseting feature of the quaternton cage iz the fact that there i3 an unique cocele sssociated

W01t ; L&l up 10 Bomophisms H, can satizfiy ondy one exact sequence of the form

1 = p, - Hy =¥V 31

This impliesthat f L =Fiy x ) ! K s quaterndon Falois group then all other anch extensions
areofthe form L' = F¢y ax ) witha in K°.

Inthe form givenin 45 13 how quaternion extensions are veually constucted
(e.gr [Del,[Ja]) Ihave notfound in the literatore that it wields all possible ones . Witt's original

approach vsing spinoy wovms ([ Wil ) will be considered in§5 .

e i vestate slightly the condition given in Prop. 4.2 20 that it becomes the cage n = 1 of the
more Zenersl question helow . We do not know of any possible interest in this question, apart from it3

Appealing svmmetry.

4.7 {Fmeron Does the following hold for 0= 0% { The caze n=1 is injectivity in Merkurjev's
thin. )
Given x in K2]

Nyi@lp (%) isasquare in K2 for all subfields of index 20



X =Xy. ... % modulosquares in K% for some yom Ky wih [EjK]= 20

45 Using spinor norms.

Let <ay, . ,ap> and <by,. .., by be tovoequivalent quadratic foms over ¥. For
gunplicity |, in what follows n i3 asswmed to be even . The other caze can be handled in ranch the zame
way (we willuse n = 3 in the corollary below ) .

Say M in KRAM oives the change of basis |, e

M. diag (&g, ... ,%q). MY = diag(by, ..., by)

{ Here disg {a,b e, ... ) stands for the disgonal matdx wnthenttes a , b, c ... along the diazonal ).

Consider the many:

-1

M' = diag(af b, ol By 'l;l.r&. disg (4f 3; .., 2 )

Thenitiz clear that M' helongs to the orthogonal grovp O({n) , overthe field F obtained by
adjoing 10 K afa; ., 4] a, »af by L, by Denoe by ¥ the Galois grovp of FIK

- Then forany v = ¥, (M')" = R, M' 38, where R, and 2, are diagonal manices with sizns
Theretore | the 2pinor norm of M', sp( M'), iz fixed by ¥
(asazquareclazs ) Te: sp(M') belonge® Q{F/IK ). The natural question is then what iz

Hap{M') ? e answer this in the following ( compare [ Sp ])

5.1 PROPOCEITION - With IM' defined ag above wre haye
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Esl:r{l'f!')zlzr;-i&i}_{aj}, RN A

1<

Froor Let C (g be the Chiford algebra of theform <1, .., 1> overthefield F | with ¥
aCting Inoa namral wrav | Consider the Clifford gyonp =fcmC{ny ¢ i3invertdble and
¢c.E. ¢l =B} Here E denotes the nnderlying quadratc space in C (1) .

Wie have then the following exsct sequence { recall nis assumed to he even ) -

1} i1
e

Il = F =T = Ofny =1

Here 1 i the natwal nclozionand  w:c¢ = (e = ce.cl) |, for e in B |
{ wee Torexample [Lm ) "We will use the following description of the algebra C(n)

Let U be an n-dimensionsl vector space over the field of two elements . Fix a bazis

0y, ..., 0, for U and consider the bilinear map & , defined by :

Sfui__.uj;l: VU 1<) and O otherwise . Letalso q(u) = 5 v, u) he its associated

quadratic form on U .

-

Let { ¥y , u=U} beanindependent setover F | thenview C(n) as span | Xyt with the

produet

9 }5 [wwl

T ®
"":.S"'l.l.' "{"'.'.' = |: SRR

Here E comesponds oo span { }:"i} ,1=1,.

.

R
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Alsothe "har ' favoluton |, defined a3 the anfiavtomorphismof ¢ n) which is the identityon E |

iz dezcribed on this haziz as -

Foreoin ©0nd define N{C) =¢. ¢ then wehave spw(c) = <HN{c)> .

Letrow ¢ besuchthat wie ) =M thenforany v in ¥

¥ = = 7 "
ct = 3, . Yy - © _;itm

where ¢, in F and r,t: ¥ = U are some linear maps .

Let x = HM{c} thenafter some calonlation we see that

= =3 with  8,.8, = f{v,w} 3,, ad f(v w) in p,

The resvlt now follows from the formmlafor B givenin 2.5, @

5.2 CORCLLARY : Asp{M') onlydepends on the isometry classes of the quadiatic forms
{31,...43.1'[} and {bl,.---,hn:"

Aot s Itisclear . =



5.3 Chvidfuy o Let <a> and < b> be independent classesin E* /K *2 and suppose that the

forme <1 ,1,1> and <a,b,ab> aeequivalent over K. Consider

¥ = sp{M"') as inthe above propositon . &lso ,let F=K{+a ,4 b ) aud
L=F(yx)  then Gad{L!K) izisomorphic 1 the quatenion group Hg  ( Seeremark 4.6).

B "Weaseethat <a> <h> + <> <ah> + =h> <gh>

= €3> <€a> 4+ <a> <h> + <«b> <bxand this corresponds 1o Hy {(3ee 36) . 8

o d Semaet o The ahove i3 Wit'a regult [ Wi], thongh in a different form . To relate hoth resnlrs
13 enomgh 1 u2e the fact that for any orthogonal 3 %3 mandx M' with det = +1 (ie agotation ) and
withno -1 eigenvalee  ap(M') = <1+ m M') >

CIf IT" Tz det = -1 we multiply it by the reflection disg (1,1 ,-1). This doez not chanee it
PO NOTm § |

Ower the rational nombers | as "Wirt mentions | we have

spl 'y = {mszg > where o i3 the angle of rotation .

5.5 PROPOSITION : Let x be sp(M') s3in 5.1 abowe then ¥ can be writen &

X =ty ... Xy modulo squares in K2 for some x; in K{+/3 )3 in K. (Compar with 42
B Given three quadratic forms qy » 93 , Qg over K, suppose M isanequivalence
betwreen qq and Q; and N anequivelence between q, and qg . Itiz sazytocheck that (M M)
=M H zothat sp({MM})' ) = sp{M' ). sp{ N'). The resvlt now follows , afier Some caloulation

,from Wi’z chain equivalence theorem that states that any eqwivalence can be written &8 a product of
equivalences | esch modifying at most two slots ata thne . { see [ L] ) . ®

46 Proof of Theorem 2.4 .

Consuder the short exact sequences
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I =y, = F' = F"% =2

1 - F2 = F" = FMF" 5 |

where all maps are the nanal ones |

Thew determiine the followme long exact sequence of cohomoloey

.= HY%o FYy = HY%o,FMF") - HYG,F%) 5 Hl(G,F") 5

1 ko

.= HNG,F" =» HYNG,F™) » H¥G,p,) = HYG,F*) > .

Recall that by Hilbert's theorery 90 we have : H(G  F *} = 1. Therefore hoth sequence can be
spliced together o one . &lo , HY(G , F) = K¥ by Calois theory |
HO(G, PP ) canbereplaced by Q (FIK), bylemms 2.2 and H2(G , F*)canbe
unersed s the crogsed product construction |, into the 2-torsion of the Braver group of K. Hence we end

np with the following exact sequence

| ]
K" - Q(FIK) = H¥(G,p,) = Bi(K).

It 12 not kawd 1o check that the map | here corresponds 1o the foonula for 8 given 2.3 . Thessfore | it
now only Yernalng 1o prove that thew ace in fact the same map . Recall that B wras defined inoterms of the
sequence of Galols groups and henee it i3 not ioumediate that it zhovld equal the map § obtained fiom the

CONOMOloZ ¥ 2eqUences.
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s > o ,
olet L = Fiy x v and T % for z0mme 3, In F*.Itmeaﬂymseemﬂmreaﬂhg = (3

Nl
weeanchoose 7 = Cal(L{K) auch that =3 Then

x %

EE.E’E = f{g,h}_shg with f{¢,h) in Ity and oy % 2.k = [({¢

Hence fhe coorle aszociated +ith the Galois groups is also the class of fand the proof is finished ®
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