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Hypergeometric series
I

2F1

[
α β
γ

| t
]

:=
∑
n≥0

(α)n(β)n

(γ)n

tn

n!
, |t| < 1.

I The coefficients An satisfies the recursion

(n + 1)(n + γ)An+1 = (n + α)(n + β)An.

I Consequently, the series satisfies the second
order differential equation

t(1 − t)
d2y
dx2 + (γ − (α + β + 1)t)

dy
dx
− αβy = 0.

I It has regular singularities at t = 0, 1,∞.
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Integral representation

I For<(γ) > <(β) > 0

2F1

[
α β
γ

| t
]

=
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0
xβ−1(1−x)γ−β−1(1−tx)−α dt

I For example

2F1

[
1
2

1
2

1 | t
]

=
1
π

∫ 1

0

1
√

x(1 − x)(1 − tx)
dt

I This is an elliptic integral
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Pendulum
I The period of a pendulum for arbitrary

amplitudes involves elliptic integrals.

I
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Elliptic curves
I Concretely, take t ∈ C not equal to 0 or 1. Then

$(t) := π · 2F1

[
1
2

1
2

1 | t
]

is a period of the Legendre elliptic curve

Et : y2 = x(1 − x)(1 − tx)

I Namely

$(t) =

∫
γ

ω,

I where ω := dx/y is a holomorphic differential
and γ a closed cycle in Et(C).
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Algebraic Geometry
I In general, the integral representation connects

2F1 to algebraic geometry (α, β, γ ∈ Q meeting
some simple conditions).

I It shows it appears as a period function.

I I.e., as the integral of a holomorphic differential
on a family of algebraic varieties (curves).

I Period functions satisfy linear differential
equations (Picard-Fuchs), ultimately because
cohomology is finite dimensional.

I Their singularities are regular.
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Arithmetic
I Note

2F1

[
1
2

1
2

1 | t
]

=
∑
n≥0

(
2n
n

)2 ( t
16

)n

I Take t ∈ Fp different from 0 and 1; here Fp is a
finite field p > 2 prime.

I Then (Deuring)

#Et(Fp) ≡ p − Ap(t) + 1 mod p,

I where

Ap(t) := (−1)(p−1)/2
(p−1)/2∑

n=0

(
2n
n

)2 ( t
16

)n
.

I Ap(t) satisfies modulo p the same differential
equation! (Igusa)
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L-functions
I Fix now t ∈ Q different from 0 and 1.

I For p - N define ap by

#E(Fp) =: p − ap + 1

I With these form the L-function of E

Λ(E, s) :=
(

2π
√

N

)−s

Γ(s)
∏

p

(1−ap p−s+p−2s)−1, <(s) > 3/2.

I By modularity (Wiles et al) Λ(s) extends to all s
and satisfies

Λ(2 − s) = ±Λ(s) 11



General (motivic) L-functions
I In general, for a pure motive M over Q of rank d

we have

Λ(M, s) = N s/2L∞(s)
∏

p

Lp(M, p−s)−1,

I where Lp(M,T ) are polynomials of degree at
most d (known as Euler factors)

I For p - N (the conductor)

Lp(M,T ) =

d∏
i=1

(1 − ξiT )−1 , |ξi| = pw/2

I the integer w is called the weight of M.

I L∞(s) is a product of gamma factors (related to
the Hodge numbers of M).

I Conjecturally, Λ(s) extends to all s and satisfies

Λ(M,w + 1 − s) = ±Λ(M, s).
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General hypergeometric series
I

dFd−1

[
α1 . . . αd
β1 . . . βd−1

| t
]

:=
∑
n≥0

(α1)n · · · (αd)n

(β1)n · · · (βd−1)n

tn

n!
, |t| < 1.

I Satisfies a linear differential equation of order d

I with regular singularities at t = 0, 1,∞.

I Integral representation

C
∫ 1

0
· · ·

∫ 1

0

d−1∏
i=1

xαi−1
i (1−xi)βi−αi−1(1−tx1 · · · xd)−αd dx1 · · · dxd
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Algebraic Geometry
I Take α := (α1, . . . , αd), β := (β1, . . . , βd−1)

multisets in Q disjoint modulo Z.

I Then

dFd−1

[
α1 . . . αd
β1 . . . βd−1

| t
]

is a period function of a family of varieties

I (by the integral representation)

ym =

d−1∏
i=1

xai
i (1 − xi)bi(1 − tx1 · · · xd)ad

for appropriate integers a1, . . . , ad; b1, . . . , bd−1
and m.
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Hypergeometric Motives
I Conjecture: There is a family of pure motives
H(α, β | t) associated to the data (α, β) defined
over a cyclotomic field.

I Fix t0 ∈ Q different from 0 and 1 and specialize,
say M := H(α, β | t0)

I The Euler factors Lp(T ) of M are computable in
terms of finite analogues of

dFd−1

[
α1 . . . αd
β1 . . . βd−1

| t
]

for all but finitely many primes.

I Other ingredients of the L-function of M, weight
w, gamma factor L∞(s), etc. are computable (or
guessed) directly in terms of α, β and t.

I The conductor N is the hardest. Good
conjectural upper bounds.
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MAGMA implementation
I

M = H((1/2, 1/2, 1/2, 1/2), (0, 0, 0, 0) | t0), t0 = 2−8.

I Motive of rank 4 and weight 3. Euler factor at
p = 2 (of good reduction: N = 255).

L2(T ) = 64T 4 + 8T 3 + 6T 2 + T + 1

I H :=

HypergeometricData([1/2,1/2,1/2,1/2],[0,0,0,0]);

I L := LSeries(H,t0 :

BadPrimes:=[<2,0,L2>]);
I CFENew(L);
I 0.000000000000000000000000000000 16



MAGMA implementation
I α = [1/8, 1/3, 3/8, 5/8, 2/3, 7/8], β =

[0, 1/6, 1/2, 1/2, 1/2, 5/6]
I t = 1 (a singular point)
I Degree drops: d = 5,w = 2
I Guess: N = 27 · 32, L2 =

8T 3 − 4T 2 − 2T + 1, L3 = −27T 3 − 3T 2 + T + 1
I > H :=

HypergeometricData([3,8],[1,2,2,2,6]);

I > L:=LSeries(H,1);

I > CFENew(L);

I > 0.000000000000000000000000000000
17


