Mixed Hodge Numbers and Factorial Ratios Bill Duke's Birthday Conference

Fernando Rodriguez Villegas

ICTP

June 2019

Chebyshev and Hodge walk into into a bar...

Chebyshev

►

$$c_n := \frac{(30n)!n!}{(6n)!(10n)!(15n)!} \in \mathbb{Z}, \qquad n = 0, 1, 2 \dots$$

The following power series is algebraic

$$c := \sum_{n \ge 0} c_n \, x^n$$

▶ There exists a polynomial $A(x, y) \in \mathbb{Z}[x, y]$ such that

$$A(x,c(x)) = 0$$

▶ The Galois group is the Weyl group of *E*₈ of order 696, 729, 600

Hypergeometric Data

A gamma list is

$$\gamma = (\gamma_1, \dots, \gamma_l), \qquad \gamma_1 \leq \dots \leq \gamma_l, \qquad \gamma_i \in \mathbb{Z}$$

$$\blacktriangleright \gamma$$
 is primitive

$$\sum_{i=1}^{l} \gamma_i = 0, \qquad \gamma_i \neq 0, \qquad \gamma_i + \gamma_j \neq 0$$

Define

$$r := \#\{\gamma_i < 0\}, \qquad s := \#\{\gamma_i > 0\}$$

• Assume $s \ge r$.

Three integrality criteria

► We will present three geometric criteria for the integrality of

$$c_n := \prod_{\gamma_i < 0} (-\gamma_i n)! / \prod_{\gamma_i > 0} (\gamma_i n)!$$

for all n:

- ► (A) Codegree of an associated polytope
- ► (B) Vanishing of certain Hodge numbers of an associated variety
- (C) Small effective weight of the associated hypergeometric motive (HGM)

Lattice polytope

Criterion (A): An associated lattice polytope Δ ⊆ Z^d, with d := l − 2, satisfies codeg(Δ) > r

 $\operatorname{codeg}(\Delta) := \min\{k \ge 1 \,|\, k\Delta \text{ has an interior lattice point}\}$

- For r = 1 there is no condition; c_n is multinomial
- For r = 2 the condition is that Δ has no interior lattice point

Lattice polytope

- Take $m_1, \ldots, m_l \in \mathbb{Z}^d$ with d := l 2 such that
- \blacktriangleright i) their affine relations over $\mathbb Z$ are spanned by γ
- ▶ ii) their affine span is primitive
- Let $\Delta \subseteq \mathbb{Z}^d$ be the convex hull of m_1, \ldots, m_l
- Δ is uniquely determined by γ up to invertible affine transformations over \mathbb{Z}

Chebyshev

- $\label{eq:gamma} \label{eq:gamma} \lab$
- ► A possible choice of m_i are the columns of the following matrix

(1	0	5	0	0	
	1	0	0	3	0	
	1	0	0	0	2)

• Schematically and not to scale Δ looks like this

Ehrhardt

► By Ehrhardt

$$\sum_{k \ge 0} \#(k\Delta) \ T^k = \frac{\delta(\Delta, T)}{(1-T)^{d+1}},$$

• where δ is a polynomial of degree at most d

•
$$\operatorname{codeg}(\Delta) = d + 1 - \operatorname{deg}(\delta) \ge 1$$

► For Chebyshev:

$$\delta(\Delta, T) = 15T^2 + 15T + 1$$

► $codeg(\Delta) = 2$

Hodge

Criterion (B): The associated variety Z_t has pure part pH^κ(Z_t) of its middle cohomology with Hodge vector

$$h := (h^{\kappa,0}, h^{\kappa-1,1}, \dots, h^{0,\kappa}) = \underbrace{(0, \dots, 0)}_{r-1} \underbrace{*, \dots, *}_{r-1} \underbrace{0, \dots, 0)}_{r-1}$$

•
$$\kappa := \dim Z_t = l - 3$$

• If r = 2 then integrality is equivalent to the vanishing of the geometric genus

$$p_g = h^{\kappa,0} = 0$$

of Z_t

► If s - r = 1 then integrality is equivalent to having only the middle Hodge number h^{r-1,r-1} non-zero

Polynomial

Consider the polynomials

$$F_u := \sum_{i=1}^l u_i \ x^{m_i}, \quad x = (x_1, \dots, x_d), \quad x^{m_i} := x_1^{m_{i,1}} \cdots x_d^{m_{i,d}}$$

• $u_1, \ldots, u_l \in \mathbb{C}^{\times}$ are parameters

▶ By scaling the variables and *F*^{*u*} itself we see there is only one true parameter

$$u := u_1^{\gamma_1} \cdots u_l^{\gamma_l}$$

▶ It is convenient to normalize the parameter and use

$$t := (-1)^{\operatorname{vol}(\gamma)} u M, \qquad M := \prod_{\gamma_i < 0} (-\gamma_i)^{-\gamma_i} / \prod_{\gamma_i > 0} (\gamma_i)^{\gamma_i}$$

•
$$\operatorname{vol}(\gamma) := \operatorname{vol}(\Delta) = -\sum_{\gamma_i < 0} \gamma_i = \sum_{\gamma_i > 0} \gamma_i$$

Define

$$Z_t \subseteq \mathbb{T} := (\mathbb{C}^{\times})^d$$

as the zero locus of F_t

► Z_t is an affine hypersurface of \mathbb{T} (dim $Z_t = \kappa = d - 1$) smooth for $t \neq 1$ Chebyshev

► We have

$$Z_t: \quad -\frac{M}{t} + xyz + x^5 + y^3 + z^2 = 0, \qquad M := \frac{30^{30}}{6^6 10^{10} 15^{15}}$$

▶ is a rational elliptic surface

• with Mordell-Weil lattice is isomorphic to E_8

Mixed Hodge

►

►

► Theorem The E-polynomial of PH^κ_c(Z_t) (primitive cohomology) is

$$E(\Delta; a, b) := \sum_{i,j} h_c^{i,j} a^i b^j = \frac{1}{ab} \left[\delta^{\#}(\Delta; a, b) + \delta^0(\Delta; a, b) - 1 \right]$$

$$\delta^{\#}(\Delta; a, b) = \sum_{\substack{N \ge 1 \\ m_{-} > m_{+}}} \frac{(a/b)^{m_{-}} - (a/b)^{m_{+}}}{a/b - 1} \delta^{\#}_{N}(a/b)$$

$$\delta^{0}(\Delta; a, b) = \sum_{N \ge 1} \frac{(ab)^{\min(m_{-}, m_{+})} - 1}{ab - 1} b^{l - m_{+} - m_{-}} \delta^{\#}_{N}(a/b)$$

Mixed Hodge

 $\delta_N^{\#}(T) := \sum_{\substack{j=1\\ \gcd(j,N)=1}}^{N-1} T^{\sum_{i=1}^l \{\frac{j}{N}\gamma_i\}}$

$$m_{\pm} := \#\{i \mid \operatorname{sgn}(\gamma_i) = \pm 1, N \mid \gamma_i, \}$$

• The pure part of $PH^{\kappa}(Z_t)$ has Hodge numbers

$$\sum_{j=0}^{\kappa} h^{\kappa-j,j} T^{j+1} = \delta^{\#}(\Delta, T) := \sum_{\substack{N \ge 1 \\ m_- > m_+}} \frac{T^{m_-} - T^{m_+}}{T - 1} \delta^{\#}_N(T)$$

Chebyshev

▶
$$\gamma = (-30, -1, 6, 10, 15)$$

 $\delta^{\#}$ N m_{-} m_{\pm} $\mathbf{2}$ $\mathbf{2}$ T2T4T $T^{2} + T$ $\begin{vmatrix} 1 \\ 1 \\ 4T^2 + 4T \end{vmatrix}$ $8T^2$ $E(\Delta; a, b) = \begin{array}{cc} 7 & 8 \\ 8 & 7 \end{array}$

HGM

- ► Criterion (C): The pure part pH^κ(Z_t) of the middle cohomology of Z_t is a Tate twist of an effective motive of pure weight s − r − 1
- ▶ The motive $\mathscr{H}(\gamma \,|\, t)$ is the associated hypergeometric motive
- ► If s r = 1 then integrality is equivalent to pH^κ(Z_t) being a Tate twist of a motive of weight zero
- Hence conjecturally an Artin motive
- In our case this holds (Beukers-Heckman). Integrality is equivalent to $\mathcal{H}(\gamma \mid t)$ having signature (n, 0)

- If s − r = 2 then integrality is equivalent to pH^κ(Z_t) being a Tate twist of a motive of Hodge type (m, m) for some m
- Hence conjecturally coming from an abelian variety

HGM

▶ The trace of Frobenius on $\mathcal{H}(\gamma \,|\, t)$ for good primes has the form

$$\mathcal{H}(t) := \frac{1}{1-q} \sum_{\chi} \frac{J(\alpha\chi, \beta\chi)}{J(\alpha, \beta)} \chi(t)$$

- Finite hypergeometric sum of Katz
- α, β are character version of the hypergeometric parameters

$$\frac{\prod_{j=1}^{n} (T - e^{2\pi i \alpha_j})}{\prod_{j=1}^{n} (T - e^{2\pi i \beta_j})} = \frac{\prod_{\gamma_i < 0} (T^{-\gamma_i} - 1)}{\prod_{\gamma_i > 0} (T^{\gamma_i} - 1)}$$

Implemented in MAGMA

Examples

For Chebyshev

$$#\tilde{Z}_t(\mathbb{F}_q) = q^2 + q\mathcal{H}(t) + 1$$

$$\tilde{Z}_t: \quad -\tfrac{M}{t} + xyz + x^5 + y^3 + z^2 = 0 \subseteq \mathbb{A}^3$$

Examples

►
$$\gamma = (-63, -8, -2, 1, 4, 16, 21, 31), \qquad r = 3, \quad s = 5$$

▶ smooth cubic 5-fold in \mathbb{P}^6 ($t \neq 1$)

$$\overline{Z}_t: \quad x_1^2 x_3 + x_0 x_1 x_2 + x_1 x_2^2 - \frac{t}{M} x_2 x_6^2 + x_3^2 x_5 + x_4^2 x_6 + x_4 x_5^2 + x_0^3 = 0$$

▶ h = (0, 0, 21, 21, 0, 0)

$$E(\Delta; a, b) = \begin{array}{cccc} 0 & 1 & 21 & 0 \\ 0 & 1 & 23 & 21 \\ 0 & 2 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{array}$$

Examples

►

$$\frac{(63n)!(8n)!(2n)!}{n!(4n)!(16n)!(21n)!(31n)!}$$
 is integral for all $n=0,1,\ldots$

▶ $\mathcal{H}(\gamma | t)$ of Hodge type (21, 21) is H^1 of the intermediate Jacobian of \overline{Z}_t (an abelian variety)

$$\#\overline{Z}_t(\mathbb{F}_q) = q^5 + q^4 + q^3 + q^2 + q + 1 - q^2 \mathcal{H}(t)$$