

Chasing Ramanujan Motives

**VIII Encuentro Regional de
Teoría de Números**

La Paloma, Rocha, Uruguay

Fernando Rodriguez Villegas, 27/10/2025

Ramanujan formulas

THEOREMS STATED BY RAMANUJAN (XI)

G. N. WATSON*.

In this paper I discuss five of the problems, numbered (3), (5), (9), (10), (11) in Ramanujan's second letter to Hardy, quoted on pp. xxviii and 352 of the *Collected Papers*.

(3)

$$1 - 5 \cdot \left(\frac{1}{2}\right)^5 + 9 \cdot \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^5 - 13 \cdot \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^5 + \dots = \frac{2}{\{\Gamma(\frac{3}{4})\}^4}.$$

Ramanujan found many formulas of this kind

Ramanujan found many formulas of this kind

From his first letter to Hardy in 1913

Ramanujan found many formulas of this kind

From his first letter to Hardy in 1913

IV Theorems on summations of series; e.g.

(1) $\frac{1}{1^3} \cdot \frac{1}{2} + \frac{1}{2^3} \cdot \frac{1}{2^2} + \frac{1}{3^3} \cdot \frac{1}{2^3} + \frac{1}{4^3} \cdot \frac{1}{2^4} + \dots$
 $= \frac{1}{8} (\log 2)^3 - \frac{\pi^2}{12} \log 2 + \left(\frac{1}{1^3} + \frac{1}{3^3} + \frac{1}{5^3} + \dots \right).$

(2) $1 + 9 \cdot \left(\frac{1}{\zeta}\right)^4 + 17 \cdot \left(\frac{1 \cdot 5}{4 \cdot \zeta}\right)^4 + 25 \cdot \left(\frac{1 \cdot 5 \cdot 9}{4 \cdot 8 \cdot \zeta}\right)^4 + \dots = \sqrt{\pi} \cdot \left\{ \Gamma\left(\frac{3}{4}\right) \right\}^2$

(3) $1 - 5 \cdot \left(\frac{1}{2}\right)^3 + 9 \cdot \left(\frac{1 \cdot 3}{2 \cdot \zeta}\right)^3 - \dots = \frac{2}{\pi}.$

Ramanujan found many formulas of this kind

From his first letter to Hardy in 1913

IV Theorems on summations of series; e.g.

(1) $\frac{1}{1^3} \cdot \frac{1}{2} + \frac{1}{2^3} \cdot \frac{1}{2^2} + \frac{1}{3^3} \cdot \frac{1}{2^3} + \frac{1}{4^3} \cdot \frac{1}{2^4} + \dots$
 $= \frac{1}{8} (\log 2)^3 - \frac{\pi^2}{12} \log 2 + \left(\frac{1}{1^3} + \frac{1}{3^3} + \frac{1}{5^3} + \dots \right).$

(2) $1 + 9 \cdot \left(\frac{1}{\zeta}\right)^4 + 17 \cdot \left(\frac{1 \cdot 5}{4 \cdot \zeta}\right)^4 + 25 \cdot \left(\frac{1 \cdot 5 \cdot 9}{4 \cdot 8 \cdot \zeta}\right)^4 + \dots = \sqrt{\pi} \cdot \left\{ \Gamma\left(\frac{3}{4}\right) \right\}^2$

(3) $1 - 5 \cdot \left(\frac{1}{2}\right)^3 + 9 \cdot \left(\frac{1 \cdot 3}{2 \cdot \zeta}\right)^3 - \dots = \frac{2}{\pi}.$

Ramanujan found many formulas of this kind

From his first letter to Hardy in 1913

IV Theorems on summations of series; e.g.

(1) $\frac{1}{1^3} \cdot \frac{1}{2} + \frac{1}{2^3} \cdot \frac{1}{2^2} + \frac{1}{3^3} \cdot \frac{1}{2^3} + \frac{1}{4^3} \cdot \frac{1}{2^4} + \dots$
 $= \frac{1}{8} (\log 2)^3 - \frac{\pi^2}{12} \log 2 + \left(\frac{1}{1^3} + \frac{1}{3^3} + \frac{1}{5^3} + \dots \right).$

(2) $1 + 9 \cdot \left(\frac{1}{\zeta}\right)^4 + 17 \cdot \left(\frac{1 \cdot 5}{4 \cdot \zeta}\right)^4 + 25 \cdot \left(\frac{1 \cdot 5 \cdot 9}{4 \cdot 8 \cdot \zeta}\right)^4 + \dots = \sqrt{\pi} \cdot \left\{ \Gamma\left(\frac{3}{4}\right) \right\}^2$

(3) $1 - 5 \cdot \left(\frac{1}{2}\right)^3 + 9 \cdot \left(\frac{1 \cdot 3}{2 \cdot \zeta}\right)^3 - \dots = \frac{2}{\pi}.$

MODULAR EQUATIONS AND APPROXIMATIONS TO π

(*Quarterly Journal of Mathematics*, **XLV**, 1914, 350—372)

MODULAR EQUATIONS AND APPROXIMATIONS TO π

(*Quarterly Journal of Mathematics*, **XLV**, 1914, 350—372)

MODULAR EQUATIONS AND APPROXIMATIONS TO π

(*Quarterly Journal of Mathematics*, **XLV**, 1914, 350—372)

$$\frac{32}{\pi} = (5\sqrt{5} - 1) + \frac{47\sqrt{5} + 29}{64} \left(\frac{1}{2}\right)^3 \left(\frac{\sqrt{5} - 1}{2}\right)^8 + \frac{89\sqrt{5} + 59}{64^2} \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^3 \left(\frac{\sqrt{5} - 1}{2}\right)^{16} + \dots,$$

Ramanujan formulas for π

Ramanujan formulas for π

Sum 1. (Ramanujan)

$$\frac{1}{\pi} = \frac{\sqrt{8}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!}{(n!)^4} \frac{[1103 + 26390n]}{396^{4n}}.$$

Ramanujan formulas for π

Sum 1. (Ramanujan)

$$\frac{1}{\pi} = \frac{\sqrt{8}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!}{(n!)^4} \frac{[1103 + 26390n]}{396^{4n}}.$$

Ramanujan, Modular Equations, and
Approximations to Pi or How to compute One
Billion Digits of Pi

Ramanujan formulas for π

Sum 1. (Ramanujan)

$$\frac{1}{\pi} = \frac{\sqrt{8}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!}{(n!)^4} \frac{[1103 + 26390n]}{396^{4n}}.$$

Ramanujan, Modular Equations, and
Approximations to Pi or How to compute One
Billion Digits of Pi

J.M. BORWEIN, P.B. BORWEIN, AND D.H. BAILEY

Gosper in 1985 calculated over 17 million digits (in fact over 17 million terms of the continued fraction) using a carefully orchestrated evaluation of Sum 1.

Gosper in 1985 calculated over 17 million digits (in fact over 17 million terms of the continued fraction) using a carefully orchestrated evaluation of Sum 1.

Algorithm 1. Let $\alpha_0 := 6 - 4\sqrt{2}$ and $y_0 := \sqrt{2} - 1$. Let

$$y_{n+1} := \frac{1 - (1 - y_n^4)^{1/4}}{1 + (1 - y_n^4)^{1/4}}$$

and

$$\alpha_{n+1} := (1 + y_{n+1})^4 \alpha_n - 2^{2n+3} y_{n+1} (1 + y_{n+1} + y_{n+1}^2).$$

Then

$$0 < \alpha_n - 1/\pi < 16 \cdot 4^n e^{-2 \cdot 4^n \pi}$$

and α_n converges to $1/\pi$ quartically (that is, with order four).
[One hundred billion digits ...]

Structure of the the basic formulas

Structure of the the basic formulas

$$\sum_{n \geq 0} a_n \delta(n) t_0^n = \frac{\beta}{\pi^c}$$

Structure of the the basic formulas

$$\sum_{n \geq 0} a_n \delta(n) t_0^n = \frac{\beta}{\pi^c}$$

Structure of the the basic formulas

$$\sum_{n \geq 0} a_n \delta(n) t_0^n = \frac{\beta}{\pi^c}$$

$$\delta \in \mathbb{Z}[x],$$

Structure of the the basic formulas

$$\sum_{n \geq 0} a_n \delta(n) t_0^n = \frac{\beta}{\pi^c}$$

Structure of the the basic formulas

$$\sum_{n \geq 0} a_n \delta(n) t_0^n = \frac{\beta}{\pi^c}$$

$$t_0 \in \mathbb{Q},$$

Structure of the the basic formulas

$$\sum_{n \geq 0} a_n \delta(n) t_0^n = \frac{\beta}{\pi^c}$$

Structure of the the basic formulas

$$\sum_{n \geq 0} a_n \delta(n) t_0^n = \frac{\beta}{\pi^c}$$

$$\beta \in \overline{\mathbb{Q}},$$

Structure of the the basic formulas

$$\sum_{n \geq 0} a_n \delta(n) t_0^n = \frac{\beta}{\pi^c}$$

Structure of the the basic formulas

$$\sum_{n \geq 0} a_n \delta(n) t_0^n = \frac{\beta}{\pi^c}$$

$c = 1, 2, \dots$

Structure of the the basic formulas

$$\sum_{n \geq 0} a_n \delta(n) t_0^n = \frac{\beta}{\pi^c}$$

Structure of the the basic formulas

$$\sum_{n \geq 0} a_n \delta(n) t_0^n = \frac{\beta}{\pi^c}$$

The series

$$\varpi(t) := \sum_{n \geq 0} a_n t^n$$

is a period function

Period functions are of the form

$$\varpi(t) = \int_{\gamma} \omega$$

Period functions are of the form

$$\varpi(t) = \int_{\gamma} \omega$$

where ω, γ are a differential form and cycle,

Period functions are of the form

$$\varpi(t) = \int_{\gamma} \omega$$

where ω, γ are a differential form and cycle,
respectively, on a family of algebraic varieties

$$Z_t, \quad t \in \mathbb{P}^1$$

Ramanujan-type formulas

About a New Kind of Ramanujan-Type Series

Jesús Guillera

About a New Kind of Ramanujan-Type Series

Jesús Guillera

$$\sum_{n=0}^{\infty} \frac{(-1)^n \left(\frac{1}{2}\right)_n^5}{n!^5 2^{10n}} (820n^2 + 180n + 13) = \frac{128}{\pi^2}, \quad (1-1)$$

$$\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n^3 \left(\frac{1}{4}\right)_n \left(\frac{3}{4}\right)_n}{n!^5 2^{4n}} (120n^2 + 34n + 3) = \frac{32}{\pi^2}, \quad (1-2)$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n \left(\frac{1}{2}\right)_n^5}{n!^5 2^{2n}} (20n^2 + 8n + 1) = \frac{8}{\pi^2}. \quad (1-3)$$

About a New Kind of Ramanujan-Type Series

Jesús Guillera

$$\sum_{n=0}^{\infty} \frac{(-1)^n \left(\frac{1}{2}\right)_n^5}{n!^5 2^{10n}} (820n^2 + 180n + 13) = \frac{128}{\pi^2}, \quad (1-1)$$

$$\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n^3 \left(\frac{1}{4}\right)_n \left(\frac{3}{4}\right)_n}{n!^5 2^{4n}} (120n^2 + 34n + 3) = \frac{32}{\pi^2}, \quad (1-2)$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n \left(\frac{1}{2}\right)_n^5}{n!^5 2^{2n}} (20n^2 + 8n + 1) = \frac{8}{\pi^2}. \quad (1-3)$$

Boris Gourevitch [Gourevitch 02] has sent me, by email, the formula below for $1/\pi^3$. He has found it by using *integer relations algorithms*:

$$\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n^7}{n!^7 2^{6n}} (168n^3 + 76n^2 + 14n + 1) = \frac{32}{\pi^3}. \quad (4-1)$$

$$\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n^7 \left(\frac{1}{4}\right)_n \left(\frac{3}{4}\right)_n}{(1)_n^3} (43680n^4 + 20632n^3 + 4340n^2 + 466n + 21) \left(\frac{1}{4096}\right)^n = \frac{2048}{\pi^4}$$

discovered by J. Cullen

We will focus on the following

$$\varpi_r(t) := \sum_{n \geq 0} \left(\frac{(1/2)_n}{n!} \right)^r t^n, \quad |t| < 1$$

We will focus on the following

$$\varpi_r(t) := \sum_{n \geq 0} \left(\frac{(1/2)_n}{n!} \right)^r t^n, \quad |t| < 1$$

$$1) \quad \varpi_r(4^r \lambda) = \frac{1}{(2\pi i)^r} \int_{|x_i|=1} \frac{1}{1 - \lambda(1 + x_1)(1 + x_1^{-1}) \cdots (1 + x_r)(1 + x_r^{-1})} \frac{dx_1}{x_1} \cdots \frac{dx_r}{x_r}$$

We will focus on the following

$$\varpi_r(t) := \sum_{n \geq 0} \left(\frac{(1/2)_n}{n!} \right)^r t^n, \quad |t| < 1$$

$$1) \quad \varpi_r(4^r \lambda) = \frac{1}{(2\pi i)^r} \int_{|x_i|=1} \frac{1}{1 - \lambda(1 + x_1)(1 + x_1^{-1}) \cdots (1 + x_r)(1 + x_r^{-1})} \frac{dx_1}{x_1} \cdots \frac{dx_r}{x_r}$$

2) The **period** satisfies an order r linear differential equation (Picard-Fuchs)

We will focus on the following

$$\varpi_r(t) := \sum_{n \geq 0} \left(\frac{(1/2)_n}{n!} \right)^r t^n, \quad |t| < 1$$

$$1) \quad \varpi_r(4^r \lambda) = \frac{1}{(2\pi i)^r} \int_{|x_i|=1} \frac{1}{1 - \lambda(1 + x_1)(1 + x_1^{-1}) \cdots (1 + x_r)(1 + x_r^{-1})} \frac{dx_1}{x_1} \cdots \frac{dx_r}{x_r}$$

2) The period satisfies a order r linear differential equation (Picard-Fuchs)

$$3) \quad Z_\lambda : \quad 0 = 1 - \lambda(1 + x_1)(1 + x_1^{-1}) \cdots (1 + x_r)(1 + x_r^{-1})$$

Note that

$$\dim Z_t = r - 1$$

Note that

$$\dim Z_t = r - 1$$

By the residue theorem in say x_r

$$\varpi(t) = \frac{1}{(2\pi i)^{r-1}} \int_{\gamma} \omega$$

where ω is an $r-1$ differential form defined over \mathbb{Q} .

The Ramanujan-type series is

$$\varpi^*(t_0)$$

where

$$\varpi^* := \delta \left(\frac{td}{dt} \right) \varpi$$

The Ramanujan-type series is

$$\varpi^*(t_0)$$

where

$$\varpi^* := \delta\left(\frac{td}{dt}\right)\varpi$$

It is a period of the differential form

$$\omega^* := \delta\left(\frac{td}{dt}\right)\omega$$

Yoga of weights

Yoga of weights

1) π has weight 2

Yoga of weights

- 1) π has weight 2
- 2) a period of a degree k differential form
has weight k

Yoga of weights

- 1) π has weight 2
- 2) a period of a degree k differential form
has weight k
- 3) $r - 1 - 2(r - 1) = -r + 1$

Yoga of weights

- 1) π has weight 2
- 2) a period of a degree k differential form
has weight k
- 3) $r - 1 - 2(r - 1) = -r + 1$
- 4) algebraic numbers have weight 0

Yoga of weights

1) π has weight 2

2) a period of a degree k differential form

has weight k

3) $r - 1 - 2(r - 1) = -r + 1$

4) algebraic numbers have weight 0

Hence if the period is a power of π it must be

$$\frac{1}{\pi^{\frac{1}{2}(r-1)}}$$

Hodge structure

For X smooth and projective: Hodge decomposition

$$H_{dR}^n(X) \otimes \mathbb{C} = \bigoplus H^{pq}(X)$$

for $p+q = n$.

Hodge structure

For X smooth and projective: Hodge decomposition

$$H_{dR}^n(X) \otimes \mathbb{C} = \bigoplus H^{pq}(X)$$

for $p+q = n$.

Define the Hodge number as

$$h^{p,q} := \dim H^{p,q}$$

For X an elliptic curve

$$H_{DR}(X) = H^{1,0} \oplus H^{0,1}$$

For X an elliptic curve

$$H_{DR}(X) = H^{1,0} \oplus H^{0,1}$$

$$h^{1,0} = h^{0,1} = 1$$

For X an elliptic curve

$$H_{DR}(X) = H^{1,0} \oplus H^{0,1}$$

$$h^{1,0} = h^{0,1} = 1$$

Hodge vector

$$h = (1, 1)$$

For an Artin L-function of degree d

$$h = (d)$$

For a modular form of weight k

$$h = \overbrace{(1, 0, \dots, 0, 1)}^k$$

For (a smooth compactification of) Z_t

$$h = \overbrace{(1, 1, \dots, 1)}^r$$

Generically, this Hodge structure is irreducible
but might split at special values of the parameter

$$t = t_0$$

Generically, this Hodge structure is irreducible
but might split at special values of the parameter

$$t = t_0$$

For example, for r odd it might split as

$$h = (1, 1, \dots, 1) = (1, 1, \dots, 0, \dots, 1, 1) \oplus (0, \dots, 0, 1, 0, \dots, 0)$$

For example, for $r=3$ we may have

$$h = (1, 1, 1) = (1, 0, 1) \oplus (0, 1, 0)$$

For example, for $r=3$ we may have

$$h = (1, 1, 1) = (1, 0, 1) \oplus (0, 1, 0)$$

So we can expect a modular form of weight 3
and a Dirichlet character

For example, for $r=3$ we may have

$$h = (1, 1, 1) = (1, 0, 1) \oplus (0, 1, 0)$$

So we can expect a modular form of weight 3
and a Dirichlet character

And indeed for $t=1/64$ we have

$$\varpi = \frac{64}{(2\pi)^2 \sqrt{7}} L(f_7, 2)$$

For example, for $r=3$ we may have

$$h = (1, 1, 1) = (1, 0, 1) \oplus (0, 1, 0)$$

So we can expect a modular form of weight 3
and a Dirichlet character

And indeed for $t=1/64$ we have

$$\varpi = \frac{64}{(2\pi)^2 \sqrt{7}} L(f_7, 2)$$

$$(42\partial + 5)\varpi = \frac{16}{\pi}, \quad \partial := \frac{td}{dt}$$

For the first page example

$$1 - 5 \cdot \left(\frac{1}{2}\right)^5 + 9 \cdot \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^5 - 13 \cdot \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^5 + \dots = \frac{2}{\{\Gamma(\frac{3}{4})\}^4}$$

For the first page example

$$1 - 5 \cdot \left(\frac{1}{2}\right)^5 + 9 \cdot \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^5 - 13 \cdot \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^5 + \dots = \frac{2}{\{\Gamma(\frac{3}{4})\}^4}$$

The decomposition is

$$h = (1, 1, 1, 1, 1) = (1, 0, 1, 0, 1) \oplus (0, 1, 0, 1, 0)$$

For the first page example

$$1 - 5 \cdot \left(\frac{1}{2}\right)^5 + 9 \cdot \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^5 - 13 \cdot \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^5 + \dots = \frac{2}{\{\Gamma(\frac{3}{4})\}^4}$$

The decomposition is

$$h = (1, 1, 1, 1, 1) = (1, 0, 1, 0, 1) \oplus (0, 1, 0, 1, 0)$$

So we expect a modular form of weight 3

Newform orbit 16.3.c.a

Introduction

Overview Random
Universe Knowledge

L-functions

Rational All

Modular forms

Classical Maass

Hilbert Bianchi

Siegel

Varieties

Elliptic curves
over \mathbb{Q}

Elliptic curves
over $\mathbb{Q}(\alpha)$

Genus 2 curves
over \mathbb{Q}

Newspace parameters

Show commands: [Magma](#) / [Pari/GP](#) / [SageMath](#)

Level: $N = 16 = 2^4$

Weight: $k = 3$

Character orbit: $[\chi] = 16.c$ (of order 2, degree 1, minimal)

Newform invariants

Self dual: yes

Analytic conductor: 0.435968422976

Analytic rank: 0

Dimension: 1

Coefficient field: \mathbb{Q}

Coefficient ring: \mathbb{Z}

Coefficient ring index: 1

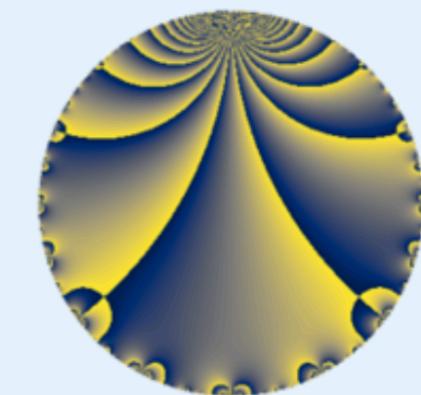
Twist minimal: yes

Sato-Tate group: $U(1)[D_2]$

Properties

Label

16.3.c.a



Level	16
Weight	3
Character orbit	16.c
Self dual	yes
Analytic conductor	0.436
Analytic rank	0
Dimension	1

Related objects

Newform orbit 16.3.c.a

Introduction

Overview Random
Universe Knowledge

L-functions

Rational All

Modular forms

Classical Maass

Hilbert Bianchi

Siegel

Varieties

Elliptic curves
over \mathbb{Q}

Elliptic curves
over $\mathbb{Q}(\alpha)$

Genus 2 curves
over \mathbb{Q}

Newspace parameters

Show commands: [Magma](#) / [Pari/GP](#) / [SageMath](#)

Level: $N = 16 = 2^4$

Weight: $k = 3$

Character orbit: $[\chi] = 16.c$ (of order 2, degree 1, minimal)

Newform invariants

Self dual: yes

Analytic conductor: 0.435968422976

Analytic rank: 0

Dimension: 1

Coefficient field: \mathbb{Q}

Coefficient ring: \mathbb{Z}

Coefficient ring index: 1

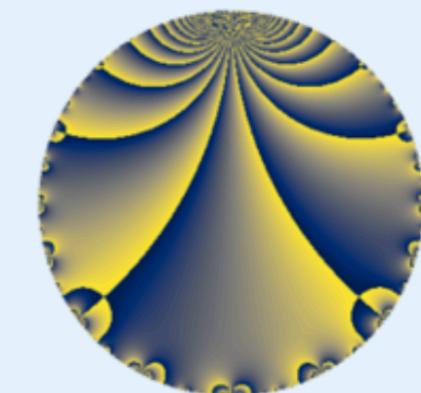
Twist minimal: yes

Sato-Tate group: $U(1)[D_2]$

Properties

Label

16.3.c.a



Level	16
Weight	3
Character orbit	16.c
Self dual	yes
Analytic conductor	0.436
Analytic rank	0
Dimension	1

Related objects

q -expansion

$$f(q) = q - 6q^5 + 9q^9 + 10q^{13} - 30q^{17} + 11q^{25} + 42q^{29} - 70q^{37} + 18q^{41} - 54q^{45} + 49q^{49} + 90q^{53} - 22q^{61} - 60q^{65} - 110q^{73} + 81q^{81} + 180q^{85} - 78q^{89} + \dots + 130q^{97} + O(q^{100})$$

Expression as an eta quotient

$$f(z) = \eta(4z)^6 = q \prod_{n=1}^{\infty} (1 - q^{4n})^6$$

Griffiths transversality

Applying $\partial := \frac{td}{dt}$ shifts the Hodge type
at least one step to the right

Griffiths transversality

Applying $\partial := \frac{td}{dt}$ shifts the Hodge type
at least one step to the right

The differential form ω has Hodge type (4,0)

Griffiths transversality

Applying $\delta := \frac{td}{dt}$ shifts the Hodge type
at least one step to the right

The differential form ω has Hodge type (4,0)

Hence to reach type (3,1) for

(0, 1, 0, 1, 0)

we need δ of degree 1

