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Ramanujan formulas



THEOREMS STATED BY RAMANUJAN (XI)
G. N. WATSoN*.

In this paper I discuss five of the problems, nimbered (3), (5), (9),
(10), (11) in Ramanujan’s second letter to Hardy, quoted on pp. xxviii
and 352 of the Collected Papers.
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Ramanujan found many formulas of this kind

From his first letter to Hardy in 1913
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Ramanujan found many formulas of this kind

From his first letter to Hardy in 1913
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Sum 1. (Ramanujan)

1 V8 = (4n)! [1103 + 26390n]

T 9801 & (n)' 396"

Ramanujan, Modular Kquations, and
Approximations to P1 or How to compute One

Billion Digits of Pi

J.M. BORWEIN, P.B. BORWEIN, AND D.H. BAILEY



Gosper in 1985 calculated over 17 million digits (in fact
over 17 million terms of the continued fraction) using a
carefully orchestrated evaluation of Sum 1.



Gosper in 1985 calculated over 17 million digits (in fact
over 17 million terms of the continued fraction) using a
carefully orchestrated evaluation of Sum 1.

Algorithm 1. Let ap:=6— 4+/2 and Yo 1= V2 — 1. Let

1 — (1—yh)t/
Ynt+1 -= 4\1/4
and
g1 = (14 Y1) an — 27"y 0 (L4 Yog1 + Yiaq )-
Then

0<a,—1/T<16-4"e 24"

and «,, converges to 1/m quartically (that is, with order four).

[One hundred billion digits ...]
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The series

IS a period function
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are of the form

w(t) = fa)
Y

where w,7y are a differential form an cycle,

respectively, on a family of algebraic varieties

Z,, t € P!
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About a New Kind of Ramanujan-Type Series

Jests Guillera

o0 —1)n 1\°

Z(n%zl(o) (820n% + 180n + 13) = 1:28 (1-1)
n=0

o (1)3 (1) (3

;(2)”n(!§;fn(4) (120n% 4 34n + 3) = fﬁ (1-2)
= ()" (3),

> n'52§) (20n% 4+ 8n + 1) = 1 (1-3)
n=0

Boris Gourevitch [{Gourevitch 02| has sent me, by email,
the formula below for 1/7°. He has found it by using
integer relations algorithms:

= (%), 2
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oo 1 1 3 n
(2)n(Dn(G)n 1 \" 2048
> )3 (436801 + 20632n° + 4340n2 + 466n + 21) (4096> =

n=0

discovered by J. Cullen
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We will focus on the following

1/2),\
@.(f) :=Z(( 2!)) f <1

n>0

o (@) = f 1 dx dx,
) 0= Cniy Sy T- A0+ x) (A + x5 ) A+ o)A+ 50 11 %

The period satisfies a order r linear differential
2)
equation (Picard-Fuchs)

3) 7, : 0=1-A1+x)A+x7)---A+x)1+x1
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By the residue theorem in say x_r

where w is an r-1 differential form defined over



The Ramanujan-type series is

@ (%)

where



The Ramanujan-type series is

@ (fp)
where
w =0 (%) w

It is a period of the differential form
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1) = has weight 2

2) a period of a degree k differential form
has weight k
3) r—1-2(r-1)=-r+1

4) algebraic numbers have weight O

Hence if the period is a power of & it must be
1

> (r=1)

T
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For X smooth and projective: Hodge decomposition
Hin(X)®C=H?(X)

for p+g = n.

Define the Hodge number as

P4 = dim H"
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For an Artin L-function of degree d

h = (d)



For a modular form of weight k

k
e e

h=(1,0,...,0,1)



For (a smooth compactification of) Z_t

r

e e
h=(,1,...,1)



Generically, this Hodge structure is irreducible
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Generically, this Hodge structure is irreducible

but might split at special values of the parameter

I = I

For example, for r odd it might split as

h=({1,1,...,1)=({,1,...,0,...,1,1)®(O,...,0,1,0,...,0)
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For example, for r=3 we may have

h = (1, 1, 1) = (1,0, 1)@(()’ 190)

SO we can expect a modular form of weight 3

and a Dirichlet character

And indeed for t=1/64 we have

64
= L(f7,2
@ = oD




For example, for r=3 we may have

h=(,1,1)=(,0,1)® (0, 1,0)

SO we can expect a modular form of weight 3

and a Dirichlet character

And indeed for t=1/64 we have

64
= L(f7,2
@ = oD

1
(420 + 5)w = —6, 0 = til
T dt
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For the first page example

1“‘5°(‘%‘)5"’9'(%‘5’)5*13-(;2222)5+"'— {r?%n‘
The decomposition is

h = (19 la 19 19 1) = (1909 1a03 1)6(09 la Oa 190)



For the first page example

1-5.(3) +9-(7:3) —13-(3°%6) += ey
The decomposition is

h = (19 la 17 19 1) = (1909 1,0, 1)@(09 1a Oa 190)

S0 we expect a modular form of weight 3
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Cfunei Weight: k=3
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L Dimension: 1 Character orbit 16.c
Elliptic curves Coefficient field: Q Self dual yes
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Classical Maass Self dual: yes
Hilbert  Bianchi  Analytic conductor:  0.435968422976
Siegel Analytic rank: 0 Level 0

. Weight 3
Varieties i ion:

.I .I Dimension: 1 Character orbit 16.c
Elliptic curves Coefficient field: Q Self dual yes
E\Iller@ Coefficient ring: 7 Analytic conductor 0.436

ot .

e Coefficient ring index: 1 Analytic rank 0
over Q(a) Dimension 1
Genus 2 curves Twist minimal: yes Reiated ob

t ject
over @ Sato-Tate group:  U(1)[D;] .
g-expansion

f(@)=q — 6¢° + 9¢° + 10g'® — 30¢'7 + 11¢% + 42¢%° — 70¢%" + 18¢** — 54¢* +
49¢% + 90¢°® — 22¢% — 60¢%° — 110¢"™ + 81¢®' + 180¢* — 78¢%° + - +
130q97 + O(qloo)

Expression as an eta quotient

f(z) =n(42)° =qI],_, (1 — ¢*")®
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Applying 8:=;—i shifts the Hodge type

at least one step to the right
The differential form @ has Hodge type (4,0)

Hence to reach type (3,1) for

(09 1’ O’ 190)

we need 6§ of degree 1






