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Origins

I N. Hitchin The self-duality equations on a Riemann
surface (1986)

I Two dimensional reduction of self-dual Yang–Mills
equation of mathematical physics.

I We shall consider here solutions of the self-duality
equations defined on a compact Riemann surface.

I ... the moduli space of all solutions turns out to be a
manifold with an extremely rich geometric structure.
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The moduli space M

I Is a smooth, non-compact, connected, hyperkähler
manifold.

I M has many complex structures (quaternions I, J,K).

I In the distinguished complex structure ± I: MDol

parametrizes stable Higgs bundles of rank two and odd
degree on the curve Σ.

I In all other complex structures: MB parametrizes odd,
irreducible representations of π1(Σ) to SL2(C).
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Circle action

4



Betti numbers

I Using the circle action on MDol Hitchin computed the
Betti numbers of M.

I The Poincaré polynomial

Pt(M) :=
∑
m

bm(M) tm

of M is
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Poincaré polynomial

Pt(M) =
(1 + t3)2g

(1− t2)(1− t4)
− t4g−4(1− t)2g

4(1 + t2)

−(g − 1)
t4g−3(1 + t)2g−2

(1− t)
+
t4g−4(1 + t)2g−2(t2 − 4t+ 1)

4(1− t)2

+22g−1t4g−4((1 + t)2g−2 − (1− t)2g−2)
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Character varieties

I Our approach (with T. Hausel and E. Letellier) is to
use the Weil conjectures to study MB, the character
variety.

I MB is diffeomeorphic to the moduli space of stable
Higgs bundles MDol (but not isomorphic as algebraic
varieties)

I In contrast with MDol, for example, MB does not
depend on the complex structure of Σ.
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Character varieties

I Let Σ be a Riemann surface of genus g with k
punctures s1, . . . , sk.

I Fix conjugacy classes C1, . . . , Ck in a group G and
consider

M := HomC(π1(Σ), G)//G,

where a small loop around si is mapped to Ci.
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Example I

G = GLn(C), g = 1, k = 1, C1 = ζnIn
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Example I

I G = GLn(C), g = 1, k = 1, C1 = ζnIn

I Solutions up to conjugation to

[A,B] = ζnIn, A,B ∈ GLn(C).

I May identify M with: C× × C×

I via

(A,B) 7→ (α, β), An = αIn, Bn = βIn.

(Stone–von-Neumann)
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Example II

G = SL2(C), g = 0, k = 4, C1, . . . , C4 semisimple.

11



Example II

I G = SL2(C), g = 0, k = 4, C1, . . . , C4 semisimple.

I For Ai ∈ SL2(C) for i = 1, 2, 3 let

ai := Tr(Ai), xi := Tr(AjAk),

where Tr is the trace and {i, j, k} = {1, 2, 3}.

I Fricke relation (1897)

0 = x1x2x3 +
3∑
i=1

(
x2i − θixi

)
+ θ4, (1)
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I

θi := aia4 + ajak, a4 := Tr(A1A2A3),

θ4 := a1 · · · a4 + a21 + · · ·+ a24 − 4.

I Generically, M is a smooth cubic surface S ⊆ P2 with
a triangle ∆ of lines removed.

I
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GLn character varieties

I Semisimple generic conjugacy classes

C1, . . . , Ck ⊆ GLn(C)

of type
µ1, . . . , µk.

I Multiplicities of the eigenvalues of a matrix in Ci are

µi = (µi1, µ
i
2, . . .), µi1 + · · ·µi2 + · · · = n,

(a partition of n).

I The variety depends on the actual choice of eigenvalues
but we drop this choice from the notation: Mµ.
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GLn character varieties
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GLn character varieties

I Using the standard presentation of π1(Σ)

Mµ = {[A1, B1] · · · [Ag, Bg]X1 · · ·Xk = In}//GLn(C)

with [A,B] := ABA−1B−1 and

A1, B1, . . . , Ag, Bg ∈ GLn(C), X1 ∈ C1, . . . , Xk ∈ Ck

I If non-empty, Mµ is a non-singular affine variety of
pure dimension

dµ := n2(2g − 2 + k)−
∑
i,j

(µij)
2 + 2.
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GLn character varieties

I Example. k = 1, µ1 = (n) (so C1 = ζIn).

I Necessarily, ζn = 1 otherwise the variety is empty.

I C1 is generic if and only if ζ is a primitive n-th root of
unity (odd representations for n = 2)

I If g = 1 this is Example I above:

Mµ ' C× × C×
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Strategy

I To obtain information about these varieties we count
points over finite fields.

I Now G = GLn(Fq)

I Tools: Fourier analysis on G, combinatorics,
symmetric functions.

I Combinatorics as geometry
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Strategy

I View

C 7→ 1

|G|
# HomC(Γ, G)

as a class function on G.

I Decompose as linear combination of irreducible
characters of G.
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Frobenius mass formula

I G finite

I Frobenius (1886)

1

|G|
# HomC(Γ, G) =

∑
χ∈Irr(G)

(
|G|
χ(1)

)2g−2 k∏
i=1

fχ(Ci)

I for a conjugacy class C of G

fχ(C) :=
#C χ(C)

χ(1)

with χ(C) the common value of χ(x) on any x ∈ C.
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Results I

I Theorem. Mµ is polynomial count and

Eµ(q) := #Mµ(Fq)

has an explicit combinatorial expression involving the
Hall–Littlewood polynomials.

I Corollary. Mµ, if non-empty, it is connected.

I (Prove leading coefficient of Eµ equals 1.)

I By a theorem of Katz Eµ(q) is the E-polynomial
of Mµ.
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Mixed Hodge structure

I For a variety X: compactly supported mixed Hodge
polynomial

Hc(X;x, y, t) :=
∑
i,j,m

hi,j;mc (X)xiyjtm,

I Common deformation of compactly supported
Poincaré polynomial

Pc(X; t) = Hc(X; 1, 1, t) =
∑
m

bmc (X)tm

I and E-polynomial

E(X;x, y) = Hc(X;x, y,−1).
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Mixed Hodge structure

I If hi,j;mc (X) = 0 unless i = j write

Hc(X; q, t) := Hc(X;
√
q,
√
q, t)

and similarly with E.

I Example. We have

Hc(C×;x, y, t) = t+ xyt2, Hc(C×; q, t) = t+ qt2

#(F×q ) = q − 1 = t+ qt2
∣∣
t=−1 = E(C×; q)
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Setup

I Genus g Cauchy function

Ω(z, w) :=
∑
λ

Hλ(z, w)
k∏
i=1

H̃λ(xi; z
2, w2),

sum over all partitions,

I H̃λ(x; q, t) ∈ Λ(x)⊗Q[q, t] is the Macdonald
polynomial

I Λ is the ring of symmetric function in infinitely many
variables x = (x1, x2, . . .)
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Setup

I Genus g hook (rational) function

Hλ(z, w) :=
∏ (z2a+1 − w2l+1)2g

(z2a+2 − w2l)(z2a − w2l+2)
,

product over cells of λ; a and l, arm and leg length,
respectively.

I
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Setup

I Define Hµ(z, w) by

(z2 − 1)(1− w2)Log (Ω(z, w)) =
∑
µ

Hµ(z, w)mµ

I mµ ∈ Λ(x1)⊗ · · · ⊗ Λ(xk) monomial symetric function

I Log takes × to + and for monomials m in z, w,xi

(1−m)−1 7→m

I A priori, Hµ(z, w) is only a rational function.
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Main conjecture

I (i) Hµ(−z, w) is a polynomial of degree dµ in each
variable with non-negative integer coefficients.

I (ii) Hc(Mµ;x, y, t) is a polynomial in xy and t,
independent of choice of generic eigenvalues

I (iii) Moreover,

Hc(Mµ; q, t) = (t
√
q)dµ Hµ

(
− 1
√
q
, t
√
q

)
.
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Consequences

I Due to the known symmetry of Macdonald polynomials

Ω(z, w) = Ω(w, z) = Ω(−z,−w)

I Hence also

Hµ(z, w) = Hµ(w, z) = Hµ(−z, w)

I Conjecture. [Curious Poincaré Duality]

Hc

(
Mµ;

1

qt2
, t

)
= (qt)−dµHc(Mµ; q, t)
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Consequences

I Case g = 0, k = 2

Mµ :=

{
• if µ = ((1), (1))

∅ otherwise

I

(q − 1)(1− t)Log

(∑
λ

H̃λ(x; q, t)H̃λ(y; q, t)∏
(qa+1 − tl)(qa − tl+1)

)
= m(1)(x)m(1)(y)

I Known identity. Cauchy formula for Macdonald
polynomials (Garsia–Haiman).
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Consequences

I Case g = 1, k = 1, µ1 = (n).

I By Example I
Mµ ' C× × C×.

I Hence (completely combinatorial identity)

∑
λ

∏ (
z2a+1 − w2l+1

)2
(z2a+2 − w2l)(z2a − w2l+2)

T |λ|

?
=
∏
n≥1

∏
r>0

∏
s≥0

(1− z2s+1w−2r+1 T n)2

(1− z2sw−2r+2 T n)(1− z2s+2w−2r T n)
.
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Consequences

I Case g = 0, k = 4, µi = (1, 1) (Example II after scaling)

I Find
Hµ(z, w) = z2 + 4 + w2

I Agrees with direct calculation of mixed Hodge
polynomial of cubic surface S0 := S \∆

I

Hc(S
0; q, t) = t2 + 4t2q + t4q2
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Consequences

I Further example, g = 0, k = 6, µi = (n− 1, 1), with
n = 1, . . . , 5.

I Displaying the coefficients of Hµ(z, w) in a grid.

Coefficient of z2iw2j in spot (i, j)
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Consequences

I

n = 1, 5 1

I

n = 2, 4

1
6 1
16 6 1
26 16 6 1

I

n = 3

1
6 1
22 7 1
51 27 7 1
66 51 22 6 1
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Consequences

I Case k = 1, n = 2, µ1 = (2) (Hitchin’s original case)

I Let
M̃µ :=Mµ//(C×)2g

(action by scaling coordinates Ai, Bi).

I

H̃µ(z, w) := Hµ(z, w)/(z − w)2g
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Consequences

Conjecture yields

H̃µ(z, w) =
(z3 − w)2g

(z4 − 1)(z2 − w2)

+
(z − w3)2g

(1− w4)(z2 − w2)

− 1

2

(z − w)2g

(z2 − 1)(1− w2)

− 1

2

(z + w)2g

(z2 + 1)(1− w2)
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Results II

I Can prove conjectures in this case.

I Check. Poincaré polynomial predicted by conjecture
agrees with Hitchin’s.
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Results II

I Theorem. The polynomial E(Mµ;x, y) depends
only on xy and

E(Mµ; q) = q
1
2
dµ Hµ

(
√
q,

1
√
q

)

I In other words, conjecture (iii) is true under the
specialization (q, t) 7→ (q,−1).

I Corollary. The E-polynomial is palindromic,

E(Mµ; q) = qdµE(Mµ; q−1).
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Quivers
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Representations
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Absolutely indecomposable representations

I V. Kac: Let Aα(q) be the number of absolutely
indecomposable representations of fixed dimension α
over Fq.

I Proved Aα is a polynomial in q.
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Example
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Jordan quiver

I

V
φ−→ V

up to conjugation

I absolutely indecomposable

m

conjugate to a full Jordan block of size α and some
eigenvalue a ∈ Fq.

I

Aα(q) = q

42



Star-shaped quiver
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Results III

I For Aµ, the A-polynomial of the associated quiver, we
have

Hµ(0,
√
q) = Aµ(q)

I Suggests relation between cohomology of Qµ, a related
quiver variety, and the pure part of the cohomology
of Mµ.

I Also equal to certain multiplicities of characters
of GLn(Fq).

I Combined with main conjecture: Aµ(1) should equal
middle Betti number of Mµ.
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Previous example
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Quiver varieties

I O1, . . . ,Ok ⊆ gln(C) adjoint orbits with generic
eigenvalues of multiplicities µ (assumed indivisible).

I

Qµ := {[A1, B1]+· · ·+[Ag, Bg]+C1 · · ·+Ck = 0}//GLn(C),

I where

A1, B1, . . . , Ag, Bg ∈ gln(C), C1 ∈ O1, . . . , Ck ∈ Ok
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